Skip to main content
Log in

Aquaporin and its effect on foliar uptake to overcome drought stress in plants

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are the membrane water channel proteins present in all organisms. Plants have the highest amount and the largest variety of aquaporin homologs with diverse subcellular localization patterns, solute specificity, and gating properties. As aquaporins regulate plant water relations, they are alleged to play a pivotal role in the defense response of plants against biotic and abiotic stress. In particular, aquaporins play a crucial role in defense response against drought stress. Plants in arid and semi-arid regions which are severely affected by drought, overcome this by absorbing water from external sources besides precipitation such as fog, dew and cloud mist through leaves by a process known as foliar water uptake. Studies had shown aquaporin's role in foliar water uptake, which regulates the transpiration rate and hydraulic conductivity in plants. However, the molecular mechanisms behind it are still up in the air. The current review emphasizes on the aquaporins and relation to foliar water uptake through its regulatory role of water status in plants under stress. Also this review underlines the functions of aquaporin genes in stomatal regulation, transpiration and its response to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., & Galili, G. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress. The Plant Cell, 15, 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai-hua, X., Ke-hui, C. U. I., Wen-cheng, W., Zhen-mei, W., Jian-liang, H., Li-xiao, N. I. E., et al. (2017). Differential responses of water uptake pathways and expression of two aquaporin genes to water-deficit in rice seedlings of two genotypes. Rice Science, 24(4), 187–197.

    Article  Google Scholar 

  • Alexandersson, E., Danielson, J. A., Rade, J., Moparthi, V. K., Fontes, M., Kjellbom, P., et al. (2010). Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. The Plant Journal, 61(4), 650–660.

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59(3), 469–484.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Wang, C. B., Xu, L., Yi, J. X., Xu, Z. L., Liu, X. Q., et al. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE, 8, e56312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayadi, M., Brini, F., & Masmoudi, K. (2019). Overexpression of a wheat aquaporin gene, TdPIP2; 1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali. International Journal of Molecular Sciences, 20(10), 2389.

    Article  PubMed Central  Google Scholar 

  • Ben‐Asher, J., Alpert, P., & Ben‐Zvi, A. (2010). Dew is a major factor affecting vegetation water use efficiency rather than a source of water in the eastern Mediterranean area. Water Resources Research46(10).

  • Berry, Z. C., Emery, N., Gotsch, S. G., & Goldsmith, G. R. (2018). Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell& Environment, 42(2), 410–423.

    Article  Google Scholar 

  • Bramley, H., Turner, D. W., Tyerman, S. D., & Turner, N. C. (2007). Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and water logging. Advances in Agronomy, 96, 133–196.

    Article  CAS  Google Scholar 

  • Breazeale, E. L., & Mcgeorge, W. T. (1953). Exudation pressure in roots of tomato plants under humid conditions. Soil, 75(4), 293–298.

    Google Scholar 

  • Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): Foliar uptake and prevention of dehydration. Plant, Cell & Environment, 27(8), 1023–1034.

    Article  Google Scholar 

  • Burkhardt, J. (2010). Hygroscopic particles on leaves: Nutrients or desiccants? Ecological Monographs, 80(3), 369–399.

    Article  Google Scholar 

  • Burkhardt, J., Basi, S., Pariyar, S., & Hunsche, M. (2012). Stomatal penetration by aqueous solutions: An update involving leaf surface particles. New Phytologist, 196(3), 774–787.

    Article  CAS  Google Scholar 

  • Calvo-Polanco, M., Armada, E., Zamarreño, A. M., García-Mina, J. M., & Aroca, R. (2019). Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. Journal of Experimental Botany, 70(21), 6437–6446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceciliato, P. H., Zhang, J., Liu, Q., Shen, X., Hu, H., Liu, C., et al. (2019). Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Arabidopsis and grasses. Plant Methods, 15(1), 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant physiology, 164(4), 1600–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont, F. O., Barrieu, F. O., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125(3), 1206–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z.-H., Chen, G., Dai, F., Wang, Y., Hills, A., Ruan, Y.-L., et al. (2017). Molecular evolution of grass stomata. Trends in Plant Science, 22(2), 124–139.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, D. T., Carvajal, M., Henzler, T., Waterhouse, R. N., Smyth, A. J., Cooke, D. T., et al. (2000). Root hydraulic conductance: Diurnal aquaporin expression and the effects of nutrient stress. Journal of Experimental Botany, 51, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, G. R., Ergul, A., Grimplet, J., Tillett, R. L., Tattersall, E. A., Bohlman, M. C., et al. (2007). Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7, 111–134.

    Article  CAS  Google Scholar 

  • Cui, X.-H., Hao, F.-S., Chen, H., Chen, J., & Wang, X.-C. (2008). Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. Journal of Plant Research, 121, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Durand, M., Cohen, D., Aubry, N., Buré, C., Tomášková, I., Hummel, I., et al. (2020). Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance. Plant, Cell & Environment, 43, 87–102.

    Article  CAS  Google Scholar 

  • Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytologist, 199(1), 151–162.

    Article  CAS  Google Scholar 

  • Fraysse, L., Wells, B., McCann, M. C., & Kjellbom, P. (2005). Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biology of the Cell, 97, 519–534.

    Article  CAS  PubMed  Google Scholar 

  • Galmes, J., Pou, A., Alsina, M. M., Tomas, M., Medrano, H., & Flexas, J. (2007). Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): Relationship with ecophysiological status. Planta, 226, 671–681.

    Article  CAS  PubMed  Google Scholar 

  • Gong, X. W., Lü, G. H., He, X. M., Sarkar, B., & Yang, X. D. (2019). High air humidity causes atmospheric water absorption via assimilating branches in the deep-rooted tree Haloxylon ammodendron in an arid desert region of Northwest China. Frontiers in plant science10.

  • Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27, 1945–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, L., Wang, Z. Y., Lin, H., Cui, W. E., Chen, J., Liu, M., et al. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Heinen, R. B., Bienert, G. P., Cohen, D., Chevalier, A. S., Uehlein, N., Hachez, C., et al. (2014). Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Molecular Biology, 86(3), 335–350.

    Article  CAS  PubMed  Google Scholar 

  • Jang, J. Y., Kim, D. G., Kim, Y. O., Kim, J. S., & Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 54, 713–725.

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff, R., Grote, K., Zhu, J. J., & Zimmermann, U. (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. The Plant Journal, 14, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff, R., Ribas-Carbo, M., Sans, J. F., Lovisolo, C., Heckwolf, M., & Uehlein, N. (2008). Aquaporins and plant water balance. Plant, Cell & Environment, 31, 658–666.

    Article  CAS  Google Scholar 

  • Kolbe, A. R., Studer, A. J., Cornejo, O. E., & Cousins, A. B. (2019). Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2. BMC Genomics, 20, 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laur, J., & Hacke, U. G. (2014). Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytologist, 203(2), 388–400.

    Article  CAS  Google Scholar 

  • Leonhardt, N., Kwak, J. M., Robert, N., Waner, D., Leonhardt, G., & Schroeder, J. I. (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. The Plant Cell, 16, 596–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Ban, L., Wen, H., Wang, Z., Dzyubenko, N., Chapurin, V., et al. (2015). An aquaporin protein is associated with drought stress tolerance. Biochemical and Biophysical Research Communications, 459, 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Limm, E. B., Simonin, K. A., Bothman, A. G., & Dawson, T. E. (2009). Foliar water uptake: A common water acquisition strategy for plants of the redwood forest. Oecologia, 161(3), 449–459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Umeda, M., & Uchimiya, H. (1994). Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Molecular Biology, 26, 2003–2007.

    Article  CAS  PubMed  Google Scholar 

  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V. R., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological Reviews, 95, 1321–1358.

    Article  CAS  PubMed  Google Scholar 

  • Maurel, C., & Chrispeels, M. J. (2001). Aquaporins: A molecular entry into plant water relations. Plant Physiology, 125(1), 135–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel, C., Verdoucq, L., Luu, D. T., & Santoni, V. (2008). Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, 59, 595–624.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, S., Schmid, P., Laur, J., Rosner, S., Charra-Vaskou, K., et al. (2014). Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiology, 164(4), 1731–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlaen, B., De Keyser, E., Ding, L., Leroux, O., Chaumont, F., & Van Labeke, M. C. (2019). Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs prodigal Fragaria x ananassa cultivar. Plant Physiology and Biochemistry, 145, 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Nada, R. M., & Abogadallah, G. M. (2014). Aquaporins are major determinants of water use efficiency of rice plants in the field. Plant Science, 227, 165–180.

    Article  CAS  PubMed  Google Scholar 

  • Ohrui, T., Nobira, H., Sakata, Y., Taji, T., Yamamoto, C., Nishida, K., et al. (2007). Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta, 227, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Oliviusson, P., Salaj, J., & Hakman, I. (2001). Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Molecular Biology, 46, 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Park, W., Scheffler, B. E., Bauer, P. J., & Campbell, B. T. (2012). Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 12(1), 1–12.

    Article  Google Scholar 

  • Prasch, C. M., Ott, K. V., Bauer, H., Ache, P., Hedrich, R., & Sonnewald, U. (2015). β-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. Journal of Experimental Botany, 66, 6059–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascio, N., & Rocca, N. L. (2005). Resurrection plants: The puzzle of surviving extreme vegetative desiccation. Critical Reviews in Plant Sciences, 24(3), 209–225.

    Article  CAS  Google Scholar 

  • Reddy, P. S., Rao, T. S. R. B., Sharma, K. K., & Vadez, V. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28.

    Article  CAS  Google Scholar 

  • Reuscher, S., Akiyama, M., Mori, C., Aoki, K., Shibata, D., & Shiratake, K. (2013). Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE, 8, e79052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., Maurel, C., et al. (2017). Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA-and pathogen-triggered stomatal closure. Proceedings of the National Academy of Science, 114, 9200–9205.

    Article  CAS  Google Scholar 

  • Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiology, 46, 1568–1577.

    Article  CAS  PubMed  Google Scholar 

  • Sarda, X., Tousch, D., Ferrare, K., Legrand, E., Dupuis, J. M., Casse-Delbart, F., et al. (1997). Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant Journal, 12, 1103–1111.

    Article  CAS  Google Scholar 

  • Shekhawat, U. K., & Ganapathi, T. R. (2013). Overexpression of a native plasma membrane aquaporin for development of abiotic stress tolerance in banana. Plant Biotechnology Journal, 11, 942–952.

    Article  PubMed  Google Scholar 

  • Simonin, K. A., Santiago, L. S., & Dawson, T. E. (2009). Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell & Environment, 32, 882–892.

    Article  Google Scholar 

  • Smart, L. B., Moskal, W. A., Cameron, K. D., & Bennett, A. B. (2001). MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant and Cell Physiology, 42, 686–693.

    Article  CAS  PubMed  Google Scholar 

  • Steppe, K., Vandegehuchte, M. W., Van de Wal, B. A., Hoste, P., Guyot, A., Lovelock, C. E., et al. (2018). Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiology, 38(7), 979–991.

    Article  CAS  PubMed  Google Scholar 

  • Šurbanovski, N., Sargent, D. J., Else, M. A., Simpson, D. W., Zhang, H., & Grant, O. M. (2013). Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. PLoS ONE, 8, e74945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, M. H., Xu, W., Zhu, Y. F., Su, W. A., & Tang, Z. C. (2001). A simple method for in situ hybridization to RNA in guard cells of Vicia faba L.: The expression of aquaporins in guard cells. Plant Molecular Biology Reporter, 19, 129–135.

    Article  CAS  Google Scholar 

  • Wang, C., Hu, H., Qin, X., Zeise, B., Xu, D., Rappel, W. J., et al. (2016). Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2; 1 aquaporin as CARBONIC ANHYDRASE4 interactor. The Plant Cell, 28, 568–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Li, Q. T., Lei, Q., Feng, C., Zheng, X., Zhou, F., et al. (2017). Ectopically expressing MdPIP1; 3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biology, 17, 246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wudick, M. M., Luu, D. T., & Maurel, C. (2009). A look inside: Localization patterns and functions of intracellular plant aquaporins. New Phytologist, 184(2), 289–302.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., & Shinozaki, K. (1992). Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant and Cell Physiology, 33, 217–224.

    Article  CAS  Google Scholar 

  • Yan, X., Zhou, M., Dong, X., Zou, S., Xiao, H., & Ma, X.F. (2015). Molecular mechanisms of foliar water uptake in a desert tree. AoB Plants7.

  • Zhao, C. X., Shao, H. B., & Chu, L. Y. (2008). Aquaporin structure-function relationships: Water flow through plant living cells. Colloids and Surfaces B: Biointerfaces, 62, 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Wang, C., Liu, R., Han, Q., Vandeleur, R. K., Du, J., et al. (2014). Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance. BMC Plant Biology, 14(1), 181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., et al. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE, 7(12), e52439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupin, M., Sedlar, A., Kidrič, M., & Meglič, V. (2017). Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. Journal of plant research, 130(4), 735–745.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the Department of Genetic Engineering, SRM Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

VMR performed all the experiments, PS designed and supervised the complete work.

Corresponding author

Correspondence to Senthilkumar Palanisamy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, M.R., Palanisamy, S. Aquaporin and its effect on foliar uptake to overcome drought stress in plants. Plant Physiol. Rep. 26, 193–199 (2021). https://doi.org/10.1007/s40502-021-00567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00567-3

Keywords

Navigation