Skip to main content

Advertisement

Log in

Periodontal Disease and Nonalcoholic Fatty Liver Disease: New Microbiome-Targeted Therapy Based on the Oral–Gut–Liver Axis Concept

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There has been emerging data and a growing appreciation of the negative effects of periodontal disease on nonalcoholic fatty liver disease (NAFLD), which is currently the most prevalent chronic liver disease worldwide. A subgroup of these NAFLD patients develops more severe and progressive forms of liver disease, namely, nonalcoholic steatohepatitis (NASH), which are a risk for developing cirrhosis and hepatocellular carcinoma. In this review, we will summarize the recent epidemiological, basic, and clinical research findings on the relationship between periodontal disease and NAFLD/NASH and discuss the pathogenesis of NAFLD/NASH and potential new treatment options with a particular focus on the gut microbiota.

Recent Findings

In terms of the mechanism by which harmful factors are transported from diseased periodontal tissue to the liver, two routes of transmission have been proposed based on the unique anatomical characteristics of the liver, namely, through a hematogenous diffusion via the systemic circulation and through a gut–liver axis via the gastrointestinal tract. In particular, with respect to enteral diffusion, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may be involved in NAFLD. In terms of a gut–liver axis, one mechanism assumed to link the gut microbiome to NAFLD is the disruption of the gut epithelial barrier, which may allow leakage of microbial products and metabolites into the portal circulation. Namely, changes in lipopolysaccharide and bacterial metabolites due to gut dysbiosis can induce intestinal inflammation and increase permeability, thereby promoting hepatic exposure to these components, which can directly cause NAFLD and liver fibrosis. Porphyromonas gingivalis, a common periodontopathic bacteria, may be involved in the pathogenesis of both the gut dysbiosis and NAFLD via several different pathways. Therefore, diverse strategies for manipulating the gut microbiome in the management of NAFLD related to periodontal disease have been proposed, including the use of antibiotics, probiotics, and prebiotics.

Summary

Despite research limitations, there is a large body of evidence supporting the relationship between periodontal disease and NAFLD/NASH. The importance of the oral–gut–liver axis in the pathogenesis of NAFLD is increasing, and future research on microbiome-targeted therapy to improve periodontal disease-related gut dysbiosis is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. ••Kuraji R, Sekino S, Kapila Y. Numabe Y 2021 Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an emerging concept of oral-liver axis. Periodontol. 2000;87(1):204–40. https://doi.org/10.1111/prd.12387 (We performed this comprehensive review of the relationship between periodontal disease and NAFLD/NASH by extensively evaluating a vast array of articles, including epidemiological studies, clinical research, animal experiments, and in vitro studies. This article is the starting point for writing the present review paper, which focuses on gut dysbiosis and microbiome-targeted therapy.)

    Article  Google Scholar 

  2. Page RC. The pathobiology of periodontal diseases may affect systemic diseases: inversion of a paradigm. Ann Periodontol. 1998;3(1):108–20. https://doi.org/10.1902/annals.1998.3.1.108.

    Article  CAS  PubMed  Google Scholar 

  3. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59. https://doi.org/10.1038/s41579-018-0089-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams RC. Periodontal disease. N Engl J Med. 1990;322(6):373–82. https://doi.org/10.1056/NEJM199002083220606.

    Article  CAS  PubMed  Google Scholar 

  5. Kapila YL. 2000 Oral health’s inextricable connection to systemic health: special populations bring to bear multimodal relationships and factors connecting periodontal disease to systemic diseases and conditions. Periodontol. 2000;87(1):11–6. https://doi.org/10.1111/prd.12398.

    Article  Google Scholar 

  6. Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Hepatology. 2016;64(1):19–22. https://doi.org/10.1002/hep.28524.

    Article  PubMed  Google Scholar 

  7. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31. https://doi.org/10.1056/NEJMra011775.

    Article  CAS  PubMed  Google Scholar 

  8. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23. https://doi.org/10.1002/hep.25762.

    Article  PubMed  Google Scholar 

  9. Calzadilla Bertot L, Adams LA 2016 The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 17(5) https://doi.org/10.3390/ijms17050774

  10. Pais R, Charlotte F, Fedchuk L, Bedossa P, Lebray P, Poynard T, et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol. 2013;59(3):550–6. https://doi.org/10.1016/j.jhep.2013.04.027.

    Article  CAS  PubMed  Google Scholar 

  11. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–5. https://doi.org/10.1016/s0016-5085(98)70599-2.

    Article  CAS  PubMed  Google Scholar 

  12. Yilmaz Y. Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther. 2012;36(9):815–23. https://doi.org/10.1111/apt.12046.

    Article  CAS  PubMed  Google Scholar 

  13. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–48. https://doi.org/10.1016/j.metabol.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  14. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46. https://doi.org/10.1002/hep.24001.

    Article  CAS  PubMed  Google Scholar 

  15. Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut? J Oral Microbiol. 2019;11(1):1586422. https://doi.org/10.1080/20002297.2019.1586422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56(3):943–51. https://doi.org/10.1002/hep.25772.

    Article  PubMed  Google Scholar 

  17. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad A, Furuta M, Shinagawa T, Takeuchi K, Takeshita T, Shimazaki Y, et al. Association of periodontal status with liver abnormalities and metabolic syndrome. J Oral Sci. 2015;57(4):335–43. https://doi.org/10.2334/josnusd.57.335.

    Article  CAS  PubMed  Google Scholar 

  19. Furuta M, Ekuni D, Yamamoto T, Irie K, Koyama R, Sanbe T, et al. Relationship between periodontitis and hepatic abnormalities in young adults. Acta Odontol Scand. 2010;68(1):27–33. https://doi.org/10.3109/00016350903291913.

    Article  CAS  PubMed  Google Scholar 

  20. Saito T, Shimazaki Y, Koga T, Tsuzuki M, Ohshima A. Relationship between periodontitis and hepatic condition in Japanese women. J Int Acad Periodontol. 2006;8(3):89–95.

    PubMed  Google Scholar 

  21. Aberg F, Helenius-Hietala J, Meurman J, Isoniemi H. Association between dental infections and the clinical course of chronic liver disease. Hepatol Res. 2014;44(3):349–53. https://doi.org/10.1111/hepr.12126.

    Article  PubMed  Google Scholar 

  22. Akinkugbe AA, Barritt AS, Cai J, Offenbacher S, Thyagarajan B, Khambaty T, et al. Periodontitis and prevalence of elevated aminotransferases in the Hispanic Community Health Study/Study of Latinos. J Periodontol. 2018;89(8):949–58. https://doi.org/10.1002/JPER.17-0579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weintraub JA, Lopez Mitnik G, Dye BA. Oral diseases associated with nonalcoholic fatty liver disease in the United States. J Dent Res. 2019;98(11):1219–26. https://doi.org/10.1177/0022034519866442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Akinkugbe AA, Slade GD, Barritt AS, Cole SR, Offenbacher S, Petersmann A, et al. Periodontitis and non-alcoholic fatty liver disease, a population-based cohort investigation in the Study of Health in Pomerania. J Clin Periodontol. 2017;44(11):1077–87. https://doi.org/10.1111/jcpe.12800. (This is the first cohort study to report a causal relationship between periodontal disease and NAFLD.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. •• Helenius-Hietala J, Suominen AL, Ruokonen H, Knuuttila M, Puukka P, Jula A, et al. Periodontitis is associated with incident chronic liver disease-a population-based cohort study. Liver Int. 2019;39(3):583–91. https://doi.org/10.1111/liv.13985. (Of the cohort studies on periodontal disease and NAFLD reported to date, this paper has the largest number of subjects and the longest follow-up period.)

    Article  CAS  PubMed  Google Scholar 

  26. Widita E, Yoshihara A, Hanindriyo L, Miyazaki H. Relationship between clinical periodontal parameters and changes in liver enzymes levels over an 8-year period in an elderly Japanese population. J Clin Periodontol. 2018;45(3):311–21. https://doi.org/10.1111/jcpe.12861.

    Article  CAS  PubMed  Google Scholar 

  27. •• Kuroe K, Furuta M, Takeuchi K, Takeshita T, Suma S, Shinagawa T, et al. Association between periodontitis and fibrotic progression of non-alcoholic fatty liver among Japanese adults. J Clin Periodontol. 2021;48(3):368–77. https://doi.org/10.1111/jcpe.13415. (This large cohort study has successfully highlighted the risk of periodontal disease for LIVER fibrosis by stratification analysis by obesity.)

    Article  PubMed  Google Scholar 

  28. Alakhali MS, Al-Maweri SA, Al-Shamiri HM, Al-Haddad K, Halboub E. The potential association between periodontitis and non-alcoholic fatty liver disease: a systematic review. Clin Oral Investig. 2018;22(9):2965–74. https://doi.org/10.1007/s00784-018-2726-1.

    Article  PubMed  Google Scholar 

  29. Chen Y, Yang YC, Zhu BL, Wu CC, Lin RF, Zhang X. Association between periodontal disease, tooth loss, and liver diseases risk. J Clin Periodontol. 2020. https://doi.org/10.1111/jcpe.13341.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• Wijarnpreecha K, Panjawatanan P, Cheungpasitporn W, Lukens FJ, Harnois DM, Pungpapong S, et al. The association between periodontitis and nonalcoholic fatty liver disease: a systematic review and meta-analysis. J Gastrointestin Liver Dis. 2020;29(2):211–7. https://doi.org/10.15403/jgld-841. (This paper is the high-quality systematic review in the field to date, as it is a meta-analysis of only those papers selected by strict definition. Therefore, the relationship between periodontal disease and NAFLD was weakened by this rigor and adjustments in metabolic factors.)

    Article  PubMed  Google Scholar 

  31. Ghouri N, Preiss D, Sattar N. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology. 2010;52(3):1156–61. https://doi.org/10.1002/hep.23789.

    Article  PubMed  Google Scholar 

  32. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865–73. https://doi.org/10.1002/hep.21327.

    Article  CAS  PubMed  Google Scholar 

  33. Streba LA, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question. World J Gastroenterol. 2015;21(14):4103–10. https://doi.org/10.3748/wjg.v21.i14.4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baranova A, Schlauch K, Elariny H, Jarrar M, Bennett C, Nugent C, et al. Gene expression patterns in hepatic tissue and visceral adipose tissue of patients with non-alcoholic fatty liver disease. Obes Surg. 2007;17(8):1111–8. https://doi.org/10.1007/s11695-007-9187-y.

    Article  PubMed  Google Scholar 

  35. Adamczak M, Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol. 2013;33(1):2–13. https://doi.org/10.1016/j.semnephrol.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  36. Turer AT, Browning JD, Ayers CR, Das SR, Khera A, Vega GL, et al. Adiponectin as an independent predictor of the presence and degree of hepatic steatosis in the Dallas Heart Study. J Clin Endocrinol Metab. 2012;97(6):E982–6. https://doi.org/10.1210/jc.2011-3305.

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012;227(2):493–507. https://doi.org/10.1002/jcp.22783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang T, Zhang C, Zhang Y, Tang F, Li H, Zhang Q, et al. Metabolic syndrome and its components as predictors of nonalcoholic fatty liver disease in a northern urban Han Chinese population: a prospective cohort study. Atherosclerosis. 2015;240(1):144–8. https://doi.org/10.1016/j.atherosclerosis.2015.02.049.

    Article  CAS  PubMed  Google Scholar 

  39. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30(5):1212–8. https://doi.org/10.2337/dc06-2247.

    Article  PubMed  Google Scholar 

  40. Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol. 2020. https://doi.org/10.1016/j.aohep.2020.03.001.

    Article  PubMed  Google Scholar 

  41. Ryan MC, Wilson AM, Slavin J, Best JD, Jenkins AJ, Desmond PV. Associations between liver histology and severity of the metabolic syndrome in subjects with nonalcoholic fatty liver disease. Diabetes Care. 2005;28(5):1222–4. https://doi.org/10.2337/diacare.28.5.1222.

    Article  PubMed  Google Scholar 

  42. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37(4):917–23. https://doi.org/10.1053/jhep.2003.50161.

    Article  PubMed  Google Scholar 

  43. • Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828. https://doi.org/10.1038/srep04828. (This animal study was the first to report that oral administration of P. gingivalis causes gut dysbiosis, endotoxemia, and lipid deposition in the liver in mice.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuda Y, Kato T, Takahashi N, Nakajima M, Arimatsu K, Minagawa T, et al. Ligature-induced periodontitis in mice induces elevated levels of circulating interleukin-6 but shows only weak effects on adipose and liver tissues. J Periodontal Res. 2016;51(5):639–46. https://doi.org/10.1111/jre.12344.

    Article  CAS  PubMed  Google Scholar 

  45. Dos Santos Carvalho J, Cardoso Guimaraes Vasconcelos AC, Herlany Pereira Alves E, Dos Santos Carvalho A, da Silva FRP, de Carvalho Franca LF, et al. Steatosis caused by experimental periodontitis is reversible after removal of ligature in rats. J Periodontal Res. 2017;52(5):883–92. https://doi.org/10.1111/jre.12459.

    Article  CAS  PubMed  Google Scholar 

  46. Vasconcelos DF, Pereira da Silva FR, Pinto ME, Santana LA, Souza IG, Miranda de Souza LK, et al. Decrease of pericytes is associated with liver disease caused by ligature-induced periodontitis in rats. J Periodontol. 2017;88(2):e49–57. https://doi.org/10.1902/jop.2016.160392.

    Article  PubMed  Google Scholar 

  47. Pessoa LS, Pereira-da Silva FR, Alves EH, Franca LF, di Lenardo D, Carvalho JS, et al. One or two ligatures inducing periodontitis are sufficient to cause fatty liver. Med Oral Patol Oral Cir Bucal. 2018;23(3):e269–76. https://doi.org/10.4317/medoral.22204.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vasconcelos A, Vasconcelos DFP, Pereira da Silva FR, de Carvalho Franca LF, Alves EHP, Lenardo DD, et al. Periodontitis causes abnormalities in the liver of rats. J Periodontol. 2019;90(3):295–305. https://doi.org/10.1002/JPER.18-0226.

    Article  CAS  PubMed  Google Scholar 

  49. • Blasco-Baque V, Garidou L, Pomie C, Escoula Q, Loubieres P, Le Gall-David S, et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut. 2017;66(5):872–85. https://doi.org/10.1136/gutjnl-2015-309897. (This animal study reported that oral administration of periodontal pathogens to mice caused insulin resistance and impaired blood glucose metabolism, despite the absence of noticeable gut microbiota changes, which doesn’t affirm the relationship between periodontal disease and gut dysbiosis in the NAFLD pathogenesis.)

    Article  CAS  PubMed  Google Scholar 

  50. Kuraji R, Fujita M, Ito H, Hashimoto S, Numabe Y. Effects of experimental periodontitis on the metabolic system in rats with diet-induced obesity (DIO): an analysis of serum biochemical parameters. Odontology. 2018;106(2):162–70. https://doi.org/10.1007/s10266-017-0322-5.

    Article  CAS  PubMed  Google Scholar 

  51. Andrade RSB, Franca LFC, Pessoa LDS, Landim BAA, Rodrigues AA, Alves EHP, et al. High-fat diet aggravates the liver disease caused by periodontitis in rats. J Periodontol. 2019;90(9):1023–31. https://doi.org/10.1002/JPER.18-0564.

    Article  CAS  PubMed  Google Scholar 

  52. Akinkugbe AA, Avery CL, Barritt AS, Cole SR, Lerch M, Mayerle J, et al. Do genetic markers of inflammation modify the relationship between periodontitis and nonalcoholic fatty liver disease? Findings from the SHIP Study. J Dent Res. 2017;96(12):1392–9. https://doi.org/10.1177/0022034517720924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwasaki T, Hirose A, Azuma T, Ohashi T, Watanabe K, Obora A, et al. Correlation between ultrasound-diagnosed non-alcoholic fatty liver and periodontal condition in a cross-sectional study in Japan. Sci Rep. 2018;8(1):7496. https://doi.org/10.1038/s41598-018-25857-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, et al. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res. 2005;96(7):714–6. https://doi.org/10.1161/01.RES.0000163015.67711.AB.

    Article  CAS  PubMed  Google Scholar 

  55. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–11. https://doi.org/10.1136/gut.48.2.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farhadi A, Gundlapalli S, Shaikh M, Frantzides C, Harrell L, Kwasny MM, et al. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int. 2008;28(7):1026–33. https://doi.org/10.1111/j.1478-3231.2008.01723.x.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9. https://doi.org/10.1016/j.jhep.2007.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16(1):44–54. https://doi.org/10.1016/j.cmet.2012.05.012. (This paper revealed that even weak blood LPS levels increase sensitivity to LPS in fatty liver, reinforcing the link between periodontal disease-derived endotoxemia and NAFLD.)

    Article  CAS  PubMed  Google Scholar 

  59. • Fujita M, Kuraji R, Ito H, Hashimoto S, Toen T, Fukada T, et al. Histological effects and pharmacokinetics of lipopolysaccharide derived from Porphyromonas gingivalis on rat maxilla and liver concerning with progression into non-alcoholic steatohepatitis. J Periodontol. 2018;89(9):1101–11. https://doi.org/10.1002/JPER.17-0678. (This paper showed that fatty liver dramatically enhances the accumulation of P. gingivalis-derived LPS in the liver.)

    Article  CAS  PubMed  Google Scholar 

  60. Ding LY, Liang LZ, Zhao YX, Yang YN, Liu F, Ding QR, et al. Porphyromonas gingivalis-derived lipopolysaccharide causes excessive hepatic lipid accumulation via activating NF-kappaB and JNK signaling pathways. Oral Dis. 2019;25(7):1789–97. https://doi.org/10.1111/odi.13153.

    Article  PubMed  Google Scholar 

  61. Hujoel PP, White BA, Garcia RI, Listgarten MA. The dentogingival epithelial surface area revisited. J Periodontal Res. 2001;36(1):48–55. https://doi.org/10.1034/j.1600-0765.2001.00011.x.

    Article  CAS  PubMed  Google Scholar 

  62. Baltacioglu E, Kehribar MA, Yuva P, Alver A, Atagun OS, Karabulut E, et al. Total oxidant status and bone resorption biomarkers in serum and gingival crevicular fluid of patients with periodontitis. J Periodontol. 2014;85(2):317–26. https://doi.org/10.1902/jop.2013.130012.

    Article  CAS  PubMed  Google Scholar 

  63. Goncalves TE, Zimmermann GS, Figueiredo LC, Souza Mde C, da Cruz DF, Bastos MF, et al. Local and serum levels of adipokines in patients with obesity after periodontal therapy: one-year follow-up. J Clin Periodontol. 2015;42(5):431–9. https://doi.org/10.1111/jcpe.12396.

    Article  CAS  PubMed  Google Scholar 

  64. Horliana AC, Chambrone L, Foz AM, Artese HP, Rabelo Mde S, Pannuti CM, et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS ONE. 2014;9(5):e98271. https://doi.org/10.1371/journal.pone.0098271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009;22(1):46–64. https://doi.org/10.1128/CMR.00028-08 (Table of Contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuraji R, Ito H, Fujita M, Ishiguro H, Hashimoto S, Numabe Y. Porphyromonas gingivalis induced periodontitis exacerbates progression of non-alcoholic steatohepatitis in rats. Clin Exp Dent Res. 2016;2(3):216–25. https://doi.org/10.1002/cre2.41.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42(9):1051–63. https://doi.org/10.1111/apt.13376.

    Article  CAS  PubMed  Google Scholar 

  68. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58(1):120–7. https://doi.org/10.1002/hep.26319.

    Article  CAS  PubMed  Google Scholar 

  69. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9. https://doi.org/10.1002/hep.26093.

    Article  CAS  PubMed  Google Scholar 

  70. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(7):868-75 e1-3. https://doi.org/10.1016/j.cgh.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  71. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–86. https://doi.org/10.1053/j.gastro.2010.11.049.

    Article  CAS  PubMed  Google Scholar 

  72. Volynets V, Kuper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57(7):1932–41. https://doi.org/10.1007/s10620-012-2112-9.

    Article  CAS  PubMed  Google Scholar 

  73. Lourenvarsigmao TGB, Spencer SJ, Alm EJ, Colombo APV. Defining the gut microbiota in individuals with periodontal diseases: an exploratory study. J Oral Microbiol. 2018;10(1):1487741. https://doi.org/10.1080/20002297.2018.1487741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al 2019 Extensive transmission of microbes along the gastrointestinal tract. Elife 8 https://doi.org/10.7554/eLife.42693.

  75. Komazaki R, Katagiri S, Takahashi H, Maekawa S, Shiba T, Takeuchi Y, et al. Periodontal pathogenic bacteria, Aggregatibacter actinomycetemcomitans affect non-alcoholic fatty liver disease by altering gut microbiota and glucose metabolism. Sci Rep. 2017;7(1):13950. https://doi.org/10.1038/s41598-017-14260-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Yamazaki K, Kato T, Tsuboi Y, Miyauchi E, Suda W, Sato K, et al. Oral pathobiont-induced changes in gut microbiota aggravate the pathology of nonalcoholic fatty liver disease in mice. Front Immunol. 2021;12: 766170. https://doi.org/10.3389/fimmu.2021.766170. (This is the latest paper showing that P. gingivalis is more virulent to the progression of NAFLD than other periodontopathic bacteria and oral symbionts.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of Enterobacteria to the liver. PLoS One. 2015;10(7):e0134234. https://doi.org/10.1371/journal.pone.0134234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ohtsu A, Takeuchi Y, Katagiri S, Suda W, Maekawa S, Shiba T, et al. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis. 2019;25(3):868–80. https://doi.org/10.1111/odi.13044.

    Article  PubMed  Google Scholar 

  79. Kitamoto S, Nagao-Kitamoto H, Jiao Y, Gillilland MG, Hayashi A, Imai J, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell. 2020. https://doi.org/10.1016/j.cell.2020.05.048.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim JY, Park YM, Lee GN, Song HC, Ahn YB, Han K, et al. Association between toothbrushing and non-alcoholic fatty liver disease. PLoS ONE. 2021;16(5):e0243686. https://doi.org/10.1371/journal.pone.0243686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Yoneda M, Naka S, Nakano K, Wada K, Endo H, Mawatari H, et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012;12:16. https://doi.org/10.1186/1471-230X-12-16. (It is a cross-sectional study that clarified the association between P. gingivalisand NAFLD/NASH in a patient population and, although single arm, includes the only current intervention study that conducted periodontal therapy in NAFLD patients.)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kamata Y, Kessoku T, Shimizu T, Kobayashi T, Kurihashi T, Sato S, et al. Efficacy and safety of PERIOdontal treatment versus usual care for nonalcoholic liver disease: protocol of the PERION multicenter, two-arm, open-label, randomized trial. Trials. 2020;21(1):291. https://doi.org/10.1186/s13063-020-4201-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics History. J Clin Gastroenterol. 2016;50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S116-S9 https://doi.org/10.1097/MCG.0000000000000697

  84. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1–7. https://doi.org/10.1016/j.copbio.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  85. • Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Am J Clin Nutr. 2019;110(1):139–49. https://doi.org/10.1093/ajcn/nqz042. (This systematic review supports the possibility that probiotics may be effective in the treatment of NAFLD.)

    Article  PubMed  PubMed Central  Google Scholar 

  86. Loman BR, Hernandez-Saavedra D, An R, Rector RS. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev. 2018;76(11):822–39. https://doi.org/10.1093/nutrit/nuy031.

    Article  PubMed  Google Scholar 

  87. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343–50. https://doi.org/10.1053/jhep.2003.50048.

    Article  CAS  PubMed  Google Scholar 

  88. Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49(3):989–97. https://doi.org/10.1002/hep.22711.

    Article  CAS  PubMed  Google Scholar 

  89. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39(11):1276–85. https://doi.org/10.1111/apt.12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 2014;99(3):535–42. https://doi.org/10.3945/ajcn.113.068890.

    Article  CAS  PubMed  Google Scholar 

  91. Jang HR, Park HJ, Kang D, Chung H, Nam MH, Lee Y, et al. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp Mol Med. 2019;51(8):1–14. https://doi.org/10.1038/s12276-019-0293-4.

    Article  CAS  PubMed  Google Scholar 

  92. Ritze Y, Bardos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, et al. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS ONE. 2014;9(1):e80169. https://doi.org/10.1371/journal.pone.0080169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G32-41. https://doi.org/10.1152/ajpgi.00024.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. ••Nguyen T, Brody H, Lin GH, Range H, Kuraji R, Ye C, et al. 2000 Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol. 2020;82(1):173–85. https://doi.org/10.1111/prd.12324 (This article provided a comprehensive review of the significance of probiotic use in periodontal therapy from a variety of perspectives.)

    Article  Google Scholar 

  95. • Radaic A, Ye C, Parks B, Gao L, Kuraji R, Malone E, et al 2020 Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol. 12(1). https://doi.org/10.1080/20002297.2020.1809302. (This is a basic study showing that L. lactis and nisin may act to inhibit periodontal disease bacteria while maintaining advantage of oral symbiotic bacteria and propose a valid approach to the recently emerging concept of oral dysbiosis.)

  96. Gao L, Kang M, Zhang MJ, Reza Sailani M, Kuraji R, Martinez A, et al. Polymicrobial periodontal disease triggers a wide radius of effect and unique virome. NPJ Biofilms Microbiomes. 2020;6(1):10. https://doi.org/10.1038/s41522-020-0120-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. •• Gao L, Kuraji R, Zhang MJ, Martinez A, Radaic A, Kamarajan P, et al 2022 Nisin or nisin-producing probiotic prevent bone loss and inflammation while promoting Ki-67-mediated proliferation and a shift toward a healthy microbiome in a polymicrobial periodontal disease model. NPJ Biofilms Microbiomes.(In Press). (This new paper shows that L. lactis and nisin may shift the oral bacterome and virome to a healthier state and protect against periodontal disease progression and systemic effects of infection with periodontal pathogen.)

  98. Jena PK, Sheng L, Liu HX, Kalanetra KM, Mirsoian A, Murphy WJ, et al. Western diet-induced dysbiosis in farnesoid X receptor knockout mice causes persistent hepatic inflammation after antibiotic treatment. Am J Pathol. 2017;187(8):1800–13. https://doi.org/10.1016/j.ajpath.2017.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee MF, Chiang CH, Lin SJ, Song PP, Liu HC, Wu TJ, et al. Recombinant Lactococcus lactis expressing Ling Zhi 8 protein ameliorates nonalcoholic fatty liver and early atherogenesis in cholesterol-fed rabbits. Biomed Res Int. 2020;2020:3495682. https://doi.org/10.1155/2020/3495682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Naudin CR, Maner-Smith K, Owens JA, Wynn GM, Robinson BS, Matthews JD, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology. 2020;159(2):639-51 e5. https://doi.org/10.1053/j.gastro.2020.03.010.

    Article  CAS  PubMed  Google Scholar 

  101. Ansari A, Bose S, Patra JK, Shin NR, Lim DW, Kim KW, et al. A controlled fermented Samjunghwan herbal formula ameliorates non-alcoholic hepatosteatosis in HepG2 cells and OLETF rats. Front Pharmacol. 2018;9:596. https://doi.org/10.3389/fphar.2018.00596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryutaro Kuraji.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not enclose studies performed in human or animal subjects performed by any of the present authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuraji, R., Kapila, Y. & Numabe, Y. Periodontal Disease and Nonalcoholic Fatty Liver Disease: New Microbiome-Targeted Therapy Based on the Oral–Gut–Liver Axis Concept. Curr Oral Health Rep 9, 89–102 (2022). https://doi.org/10.1007/s40496-022-00312-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-022-00312-1

Keywords

Navigation