Skip to main content

Advertisement

Log in

Growth Factors and Cell Homing in Dental Tissue Regeneration

  • Dental Stem Cells in Tissue Regeneration (F Setzer, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize current views on the role and therapeutic potential of growth factors (GFs) within endodontic cell homing.

Recent Findings

Cell homing/revitalization techniques aim to regenerate dentin and pulp using endogenous cells. Clinically, revitalization has successfully created new vital tissue in necrotic permanent teeth with an open apex; however, there is no evidence of new odontoblasts, pulp tissue, or predictable extension in root length. Although the response is reparative rather than regenerative, exciting opportunities to improve these biologically-based strategies remain by (1) efficiently sequestering dentin-matrix-components (DMCs) using irrigants and dental materials (2) designing next-generation GF-releasing scaffold materials and (3) utilizing other sources of GF such as cells and plasma-rich plasma and plasma-rich fibrin.

Summary

GFs can promote reparative-dentinogenesis and pulp-like tissue formation. The future development and clinical approval of GF-functionalized-scaffolds is a priority; however, current focus should be to harness DMCs and target the interaction of stem cells and GFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reeves R, Stanley HR. The relationship of bacterial penetration and pulpal pathosis in carious teeth. Oral Surg Oral Med Oral Pathol. 1966;22:59–65.

    CAS  PubMed  Google Scholar 

  2. Luder HU. Malformations of the tooth root in humans. Front Physiol. 2015;6:307.

    PubMed  PubMed Central  Google Scholar 

  3. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18:134–7.

    CAS  PubMed  Google Scholar 

  4. Caplan DJ, Cai J, Yin G, White BA. Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent. 2005;65:90–6.

    PubMed  Google Scholar 

  5. Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J. 2007;40:186–97.

    CAS  PubMed  Google Scholar 

  6. Jeeruphan T, Jantarat J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod. 2012;38:1330–6.

    PubMed  Google Scholar 

  7. Alobaid AS, Cortes LM, Lo J, Nguyen TT, Albert J, Abu-Melha AS, et al. Radiographic and clinical outcomes of the treatment of immature permanent teeth by revascularization or apexification: a pilot retrospective cohort study. J Endod. 2014;40:1063–70.

    PubMed  PubMed Central  Google Scholar 

  8. Katebzadeh N, Dalton BC, Trope M. Strengthening immature teeth during and after apexification. J Endod. 1998;24:256–9.

    CAS  PubMed  Google Scholar 

  9. • Wolters WJ, Duncan HF, Tomson PL, Karim IE, McKenna G, Dorri M, et al. Minimally invasive endodontics: a new diagnostic system for assessing pulpitis and subsequent treatment needs. Int Endod J. 2017;50:825–9 Highlighted problems with current classification of pulpitis and suggestive new classification. Linked new minimally invasive strategies to management.

    CAS  PubMed  Google Scholar 

  10. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–90.

    PubMed  Google Scholar 

  11. •• Galler KM, Krastl G, Simon S, Van Gorp G, Meschi N, Vahedi B, et al. European Society of Endodontology position statement: revitalization procedures. Int Endod J. 2016;49:717–23 This position statement endorsed by the European Society of Endodontology (ESE) describes European views on revitalization.

    CAS  PubMed  Google Scholar 

  12. Galler KM. Clinical procedures for revitalization: current knowledge and considerations. Int Endod J. 2016;49:926–36.

    CAS  PubMed  Google Scholar 

  13. Nevins AJ, Finkelstein F, Borden BG, Laporta R. Revitalization of pulpless open apex teeth in rhesus monkeys, using collagen-calcium phosphate gel. J Endod. 1976;2:159–65.

    CAS  PubMed  Google Scholar 

  14. Nevins A, Wrobel W, Valachovic R, Finkelstein F. Hard tissue induction into pulpless open-apex teeth using collagen-calcium phosphate gel. J Endod. 1977;3:431–3.

    CAS  PubMed  Google Scholar 

  15. •• Shimizu E, Jong G, Partridge N, Rosenberg PA, Lin LM. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod. 2012;38:1293–7 Demonstrated histologically that regeneration of pulp-like tissue possible in vivo in human teeth if the epithelial root sheath of Hertwig and the apical papilla are intact.

    PubMed  Google Scholar 

  16. Peng C, Zhao Y, Wang W, Yang Y, Qin M, Ge L. Histologic findings of a human immature revascularized/regenerated tooth with symptomatic irreversible pulpitis. J Endod. 2017;43:905–9.

    PubMed  Google Scholar 

  17. Goustin AS, Leof EB, Shipley GD, Moses HL. Growth factors and cancer. Cancer Res. 1986;46:1015–29.

    CAS  PubMed  Google Scholar 

  18. Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: a comprehensive review. Int Endod J. 2018. https://doi.org/10.1111/iej.12954.

    CAS  PubMed  Google Scholar 

  19. Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32:483–92.

    CAS  PubMed  Google Scholar 

  20. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    CAS  PubMed  Google Scholar 

  21. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood. 1995;85:2269–75.

    CAS  PubMed  Google Scholar 

  22. Solanilla A, Grosset C, Duchez P, Legembre P, Pitard V, Dupouy M, et al. Flt3-ligand induces adhesion of haematopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism. Br J Haematol. 2003;120:782–6.

    CAS  PubMed  Google Scholar 

  23. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Ex Med. 1997;185:111–20.

    CAS  Google Scholar 

  24. Hattori K, Heissig B, Rafii S. The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma. 2003;44:575–82.

    CAS  PubMed  Google Scholar 

  25. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther. 2002;9:631–41.

    CAS  PubMed  Google Scholar 

  26. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61.

    CAS  PubMed  Google Scholar 

  27. Wang J, Mukaida N, Zhang Y, Ito T, Nakao S, Matsushima K. Enhanced mobilization of hematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukoc Biol. 1997;62:503–9.

    CAS  PubMed  Google Scholar 

  28. •• Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endod. 2016;42:47–56 State of the art review highlighting the role of dentin matrix components to contribute GFs and other bioactive factors to pulp repair and regeneration.

    PubMed  Google Scholar 

  29. Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res. 2016;366:129–42.

    CAS  PubMed  Google Scholar 

  30. Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod. 2015;41:36–44.

    PubMed  Google Scholar 

  31. Piva E, Silva AF, Nör JE. Functionalized scaffolds to control dental pulp stem cell fate. J Endod. 2014;40:S33–40.

    PubMed  PubMed Central  Google Scholar 

  32. Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin N Am. 2017;61:689–711.

    PubMed  Google Scholar 

  33. Duncan HF, Smith AJ, Fleming GJ, Reid C, Smith G, Cooper PR. Release of bio-active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). Int Endod J. 2017;50:24–38.

    CAS  PubMed  Google Scholar 

  34. Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, et al. Effects of growth factors on dental stem/progenitor cells. Dent Clin N Am. 2012;56:563–75.

    PubMed  Google Scholar 

  35. Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J. 2018;51:405–19.

    CAS  PubMed  Google Scholar 

  36. Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, et al. Dentin and dental pulp regeneration by the patient’s endogenous cells. Endod Topics. 2013;28:106–17.

    PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16:3023–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196–200.

    PubMed  Google Scholar 

  39. •• Shimizu E, Ricucci D, Albert J, Alobaid AS, Gibbs JL, Huang GT, et al. Clinical, radiographic, and histological observation of a human immature permanent tooth with chronic apical abscess after revitalization treatment. J Endod. 2013;39:1078–83 Demonstrated that although successful clinically, histologically there no pulp tissue, only bone-like fibrous connective tissue in case of pulp necrosis.

    PubMed  Google Scholar 

  40. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27:2865–73.

    CAS  PubMed  Google Scholar 

  41. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35:636–42.

    CAS  PubMed  Google Scholar 

  42. Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC, et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49:581–90.

    CAS  PubMed  Google Scholar 

  43. Alghilan MA, Windsor LJ, Palasuk J, Yassen GH. Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. Int Endod J. 2017;50:667–75.

    CAS  PubMed  Google Scholar 

  44. Niu Y, Li Q, Ding Y, Dong L, Wang C. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.06.002.

  45. Fischbach GD, Fischbach RL. Stem cells: science, policy, and ethics. J Clin Invest. 2004;114:1364–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3:1–5.

    PubMed  Google Scholar 

  47. Bojic S, Volarevic V, Ljujic B, Stojkovic M. Dental stem cells-characteristics and potential. Histol Histopathol. 2014;29:699–706.

    CAS  PubMed  Google Scholar 

  48. Fayazi S, Takimoto K, Diogenes A. Comparative evaluation of chemotactic factor effect on migration and differentiation of stem cells of the apical papilla. J Endod. 2017;43:1288–93.

    PubMed  Google Scholar 

  49. Jeanneau C, Lundy FT, El Karim IA, About I. 47. Potential therapeutic strategy of targeting pulp fibroblasts in dentin-pulp regeneration. J Endod 2017:43:S17–S24.

    PubMed  Google Scholar 

  50. Saito K, Oshima H. Differentiation capacity and maintenance of dental pulp stem/progenitor cells in the process of pulpal healing following tooth injuries. Journal J Oral Biosci. 2017;59:63–70.

    Google Scholar 

  51. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent. 2010;38:687–97.

    CAS  PubMed  Google Scholar 

  52. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med. 2010;5:617–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011;90:1013–8.

    CAS  PubMed  Google Scholar 

  54. Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, et al. Autophagy in SDF-1alpha-mediated DPSC migration and pulp regeneration. Biomaterials. 2015;44:11–23.

    CAS  PubMed  Google Scholar 

  55. Gervois P, Wolfs E, Dillen Y, Hilkens P, Ratajczak J, Driesen RB, et al. Paracrine maturation and migration of SH-SY5Y cells by dental pulp stem cells. J Dent Res. 2017;96:654–62.

    CAS  PubMed  Google Scholar 

  56. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.

    PubMed  PubMed Central  Google Scholar 

  57. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34:166–71.

    PubMed  PubMed Central  Google Scholar 

  58. Galler KM, Eidt A, Schmalz G. Cell-free approaches for dental pulp tissue engineering. J Endod. 2014;40:S41–5.

    PubMed  Google Scholar 

  59. Chrepa V, Pitcher B, Henry MA, Diogenes A. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. J Endod. 2017;43:561–7.

    PubMed  Google Scholar 

  60. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. de Almeida JF, Chen P, Henry MA, Diogenes A. Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng Part A. 2014;20:3089–100.

    PubMed  PubMed Central  Google Scholar 

  62. Isaka J, Ohazama A, Kobayashi M, Nagashima C, Takiguchi T, Kawasaki H, et al. Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol. 2001;72:314–23.

    CAS  PubMed  Google Scholar 

  63. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone. 2012;50:540–5.

    CAS  PubMed  Google Scholar 

  65. Ruangsawasdi N, Zehnder M, Patcas R, Ghayor C, Siegenthaler B, Gjoksi B, et al. Effects of stem cell factor on cell homing during functional pulp regeneration in human immature teeth. Tissue Eng Part A. 2017;23:115–23.

    CAS  PubMed  Google Scholar 

  66. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tamma R, Ribatti D. Bone niches, hematopoietic stem cells, and vessel formation. Int J Mol Sci. 2017;18.

    PubMed Central  Google Scholar 

  68. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999;18:3964–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-β isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol. 1997;42:219–23.

    CAS  PubMed  Google Scholar 

  70. Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ. 2003;67:678–89.

    PubMed  Google Scholar 

  71. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, et al. Role of dentin MMPs in caries progression and bond stability. J Dent Res. 2015;94:241–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dung SZ, Gregory RL, Li Y, Stookey GK. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res. 1995;29:483–9.

    CAS  PubMed  Google Scholar 

  73. Charadram H, Farahani RM, Harty D, Rathsam C, Swain MV, Hunter N. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix. Bone. 2012;2012(50):265–75.

    Google Scholar 

  74. Smith AJ, Tobias RS, Cassidy N, Plant CG, Browne RM, Begue-Kirn C, et al. Odontoblast stimulation in ferrets by dentine matrix components. Arch Oral Biol. 1994;39:13–22.

    CAS  PubMed  Google Scholar 

  75. Ferracane JL, Cooper PR, Smith AJ. Dentin matrix component solubilization by solutions of pH relevant to self-etching dental adhesives. J Adhes Dent. 2013;15:407–12.

    CAS  PubMed  Google Scholar 

  76. Widbiller M, Eidt A, Hiller KA, Buchalla W, Schmalz G, Galler KM. Ultrasonic activation of irrigants increases growth factor release from human dentine. Clin Oral Investig. 2017;21:879–88.

    CAS  PubMed  Google Scholar 

  77. Galler KM, Buchalla W, Hiller KA, Federlin M, Eidt A, Schiefersteiner M, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod. 2015;41:363–8.

    PubMed  Google Scholar 

  78. • Martin DE, De Almeida JF, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40:51–5 Ex vivo study highlighting the effects of increasing sodium hypochlorite concentration on the biological response of SCAP.

    PubMed  Google Scholar 

  79. Shrestha S, Torneck CD, Kishen A. Dentin conditioning with bioactive molecule releasing nanoparticle system enhances adherence, viability, and differentiation of stem cells from apical papilla. J Endod. 2016;42:717–23.

    PubMed  Google Scholar 

  80. Bègue-Kirn C, Smith AJ, Ruch JV, Wozney JM, Purchio A, Hartmann D, et al. Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol. 1992;36:491–503.

    PubMed  Google Scholar 

  81. Bento LW, Zhang Z, Imai A, Nör F, Dong Z, Shi S, et al. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res. 2013;92:51–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yoshiba N, Edanami N, Tohma A, Takeuchi R, Ohkura N, Hosoya A, et al. Detection of bone marrow-derived fibrocytes in human dental pulp repair. Int Endod J. 2018. https://doi.org/10.1111/iej.12940.

    CAS  PubMed  Google Scholar 

  83. • Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, et al. Dental pulp stem cells: their potential in reinnervation and angiogenesis by using scaffolds. J Endod. 2017;43:S12–6 Comprehensive review highlighting the role of DPSCs and GFs in angiogenesis and neurogenesis.

    PubMed  Google Scholar 

  84. Aranha AM, Zhang Z, Neiva KG, Costa CA, Hebling J, Nör JE. Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod. 2010;36:1633–7.

    PubMed  Google Scholar 

  85. Albanese MEL, Polizzi B, Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013;10:23.

    PubMed  PubMed Central  Google Scholar 

  86. Roselló-Camps À, Monje A, Lin GH, Khoshkam V, Chávez-Gatty M, Wang HL, et al. Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:562–74.

    PubMed  Google Scholar 

  87. Rodriguez IA, Growney Kalaf EA, Bowlin GL, Sell SA. Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy. Biomed Res Int. 2014;392398.

  88. Volpi P, Quaglia A, Schoenhuber H, Melegati G, Corsi MM, Banfi G, et al. Growth factors in the management of sport-induced tendinopathies: results after 24 months from treatment. A pilot study. J Sports Med Phys Fitness. 2010;50:494–500.

    CAS  PubMed  Google Scholar 

  89. Lyras DN, Kazakos K, Georgiadis G, Mazis G, Middleton R, Richards S, et al. Does a single application of PRP alter the expression of IGF-I in the early phase of tendon healing? J Foot Ankle Surg. 2011;50:276–82.

    PubMed  Google Scholar 

  90. Alsousou J, Ali A, Willett K, Harrison P. The role of platelet-rich plasma in tissue regeneration. Platelets. 2013;24:173–82.

    CAS  PubMed  Google Scholar 

  91. Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study. J Endod. 2012;38:1581–7.

    PubMed  Google Scholar 

  92. Hotwani K, Sharma K. Platelet rich fibrin—a novel acumen into regenerative endodontic therapy. Rest Dent Endod. 2014;39:1–6.

    Google Scholar 

  93. Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol. 2012;13:1231–56.

    CAS  PubMed  Google Scholar 

  94. Narang I, Mittal N, Mishra N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: a clinical study. Contemp Clin Dent. 2015;6:63–8.

    PubMed  PubMed Central  Google Scholar 

  95. Zhou R, Wang Y, Chen Y, Chen S, Lyu H, Cai Z, et al. Radiographic, histologic, and biomechanical evaluation of combined application of platelet-rich fibrin with blood clot in regenerative endodontics. J Endod. 2017;43:2034–40.

    PubMed  Google Scholar 

  96. Lolato A, Bucchi C, Taschieri S, Kabbaney AE, Del Fabbro M. Platelet concentrations for revitalization of immature necrotic teeth: a systematic review of the clinical studies. Platelets. (5):383–92.

    CAS  PubMed  Google Scholar 

  97. Tziafas D, Alvanou A, Panagiotakopoulos N, Smith AJ, Lesot H, Komnenou A, et al. Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch Oral Biol. 1995;40:883–93.

    CAS  PubMed  Google Scholar 

  98. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol. 2000;45:1013–6.

    CAS  PubMed  Google Scholar 

  99. Galler KM, D'Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011;37:1536–41.

    PubMed  Google Scholar 

  100. Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U, et al. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials. 2010;31:7985–94.

    CAS  PubMed  Google Scholar 

  101. Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D'Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A. 2012;18:176–84.

    CAS  PubMed  Google Scholar 

  102. Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, et al. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater. 2018. https://doi.org/10.1016/j.actbio.2018.07.035.

    CAS  PubMed  Google Scholar 

  103. Nagy MM, Tawfik HE, Hashem AA, Abu-Seida AM. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols. J Endod. 2014;40:192–8.

    PubMed  Google Scholar 

  104. Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis. 2015;21:113–22.

    CAS  PubMed  Google Scholar 

  105. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, et al. Complete pulp regeneration after pulpectomy by transplantation of CD1051 stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17:1911–20.

    CAS  PubMed  Google Scholar 

  106. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61.

    PubMed  PubMed Central  Google Scholar 

  107. Nakashima M, Iohara K. Recent progress in translation from bench to a pilot clinical study on total pulp regeneration. J Endod. 2017;43:S82–6.

    PubMed  Google Scholar 

  108. Kawamura R, Hayashi Y, Murakami H, Nakashima M. EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells contain an inductive microenvironment, promoting cell proliferation, migration, and odontoblastic differentiation. Stem Cell Res Ther. 2016;7:77.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Work in Dr. Emi Shimizu’s lab is supported by a grant from the National Institutes of Dental and Craniofacial Research (NIDCR) R01-DE025885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. Duncan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dental Stem Cells in Tissue Regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncan, H.F., Kobayashi, Y. & Shimizu, E. Growth Factors and Cell Homing in Dental Tissue Regeneration. Curr Oral Health Rep 5, 276–285 (2018). https://doi.org/10.1007/s40496-018-0194-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-018-0194-y

Keywords

Navigation