Skip to main content

Advertisement

Log in

Anti-cancer Efficacy of Metformin: Recent Updates on Breast and Other Cancers

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metformin is widely used for the management of pre-diabetes and type 2 diabetes (T2D). In recent times, metformin has also been the focus of intensive research in the field of cancer prevention because various preclinical and clinical study outcomes have associated its intake with a decrease in cancer incidence and anti-cancer benefits. Notably, the cancer-preventive and anti-cancer effects of metformin have been attributed to its potential to target metabolic syndrome-associated physiological aberrations, such as its capacity to lower blood insulin and glucose levels, particularly in malignancies that have been associated with hyperinsulinemia and hyperglycemia. Whether these cancer-protective benefits can also be extended to patients not afflicted with metabolic syndrome or non-T2D cohorts is still not clear. Thus, the role of metformin in cancer prevention and intervention across the molecular, genetic, epigenetic, and translational spectrum must be elucidated in depth to address apprehensions about its use as a pan-cancer intervention agent. This review will assist in recognizing the established benefits as well as the limitations related to the advancement of metformin as an effective anti-cancer drug.

Recent Findings

This review summarizes recent advances in metformin-centered pre-clinical and clinical research in an effort to delve into these unanswered questions and present an unbiased, focused perspective on the anti-cancer benefits of metformin in different cancers (with a focus on breast cancer).

Summary

The evidence of metformin’s cancer benefits cannot be overlooked and indicates its high pleiotropic potential to be an effective cancer prevention/intervention drug against breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56(9):1898–906. https://doi.org/10.1007/s00125-013-2991-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–76. https://doi.org/10.1007/s00125-017-4318-z.

    Article  CAS  PubMed  Google Scholar 

  3. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  4. Organization WH. WHO Model List of Essential Medicines. 17th list. Geneva: WHO; 2011. p. 2013.

    Google Scholar 

  5. Briones RM, Sarmah AK, Padhye LP. A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems. Environ Pollut. 2016;219:1007–20. https://doi.org/10.1016/j.envpol.2016.07.040.

    Article  CAS  PubMed  Google Scholar 

  6. Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9(4):415–22. https://doi.org/10.2217/14622416.9.4.415.

    Article  CAS  PubMed  Google Scholar 

  7. Markowicz-Piasecka M, Huttunen KM, Mateusiak L, Mikiciuk-Olasik E, Sikora J. Is Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Curr Pharm Des. 2017;23(17):2532–50. https://doi.org/10.2174/1381612822666161201152941.

    Article  CAS  PubMed  Google Scholar 

  8. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(11):820–7. https://doi.org/10.1097/FPC.0b013e3283559b22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab. 2015;21(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  10. Soliman A, De Sanctis V, Alaaraj N, Hamed N. The clinical application of metformin in children and adolescents: A short update. Acta Biomed. 2020;91(3):e2020086. https://doi.org/10.23750/abm.v91i3.10127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Sangaraju SL, Yepez D, Grandes XA, TalankiManjunatha R, Habib S. Cardio-metabolic disease and polycystic ovarian syndrome (PCOS): a narrative review. Cureus. 2022;14(5):076. https://doi.org/10.7759/cureus.25076. This review article deliberates on the role of metformin use in PCOS.

    Article  Google Scholar 

  12. Tang X, Li J, Xiang W, Cui Y, Xie B, Wang X, et al. Metformin increases hepatic leptin receptor and decreases steatosis in mice. J Endocrinol. 2016;230(2):227–37. https://doi.org/10.1530/JOE-16-0142.

    Article  CAS  PubMed  Google Scholar 

  13. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5. https://doi.org/10.1136/bmj.38415.708634.F7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77. https://doi.org/10.1007/s00125-009-1440-6.

    Article  CAS  PubMed  Google Scholar 

  15. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657–69. https://doi.org/10.1016/j.numecd.2017.04.009.

    Article  CAS  PubMed  Google Scholar 

  16. LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77–96. https://doi.org/10.1210/endrev/bnaa023. This review article deliberates on the mechanisms assoaciated with metformin efficacy.

    Article  PubMed  Google Scholar 

  17. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, et al. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521–2. https://doi.org/10.1016/j.cmet.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  19. • LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, et al. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A. 2022;119(10):e2122287119. https://doi.org/10.1073/pnas.2122287119. This preclinical study investigates the effect of metformin on gluconeogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24(9):1384–94. https://doi.org/10.1038/s41591-018-0125-4. This preclinical study investigates the effect of metformin on gluconeogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jakab J, Zjalic M, Miksic S, Tusek I, Cosic V, Volaric N, et al. Effect of metformin and simvastatin in inhibiting proadipogenic transcription factors. Curr Issues Mol Biol. 2021;43(3):2082–97. https://doi.org/10.3390/cimb43030144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markowska A, Stanislawiak-Rudowicz J, Kasprzak T, Markowska J, Szarszewska M. Metformin in selected malignancies in women. Ginekol Pol. 2022. https://doi.org/10.5603/GP.a2021.0222.

    Article  PubMed  Google Scholar 

  23. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 2017;60(9):1639–47. https://doi.org/10.1007/s00125-017-4372-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Szymczak-Pajor I, Wenclewska S, Sliwinska A. Metabolic action of metformin. Pharmaceuticals (Basel). 2022;15(7):810. https://doi.org/10.3390/ph15070810. This review article deliberates on the benefits of metformin intake.

    Article  CAS  PubMed  Google Scholar 

  25. Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56. https://doi.org/10.1038/nrendo.2013.256.

    Article  CAS  PubMed  Google Scholar 

  26. Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. Ann Transl Med. 2014;2(6):57. https://doi.org/10.3978/j.issn.2305-5839.2014.06.01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  28. Zhu B, Qu S. The relationship between diabetes mellitus and cancers and its underlying mechanisms. Front Endocrinol (Lausanne). 2022;13:800. https://doi.org/10.3389/fendo.2022.800995.

    Article  Google Scholar 

  29. •• Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and breast cancer: where are we now? Int J Mol Sci. 2022;23(5):2705. https://doi.org/10.3390/ijms23052705. This review article summarizes different breast cancer clinical studies involving metformin intake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res. 2011;9(5):603–15. https://doi.org/10.1158/1541-7786.MCR-10-0343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS ONE. 2014;9(9):e108444.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roarty K, Echeverria GV. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol. 2021;11:645698. https://doi.org/10.3389/fonc.2021.645698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fagan DH, Yee D. Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13(4):423–9. https://doi.org/10.1007/s10911-008-9098-0.

    Article  PubMed  Google Scholar 

  34. Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, et al. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med. 2022;20(1):263. https://doi.org/10.1186/s12967-022-03463-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Flores-Garcia LC, Ventura-Gallegos JL, Romero-Cordoba SL, Hernandez-Juarez AJ, Naranjo-Meneses MA, Garcia-Garcia E, et al. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One. 2022;17(4):e0266073. https://doi.org/10.1371/journal.pone.0266073. This article investigates the impact of sera (with and without metformin intake) on the growth of breast cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Urpilainen E, Kangaskokko J, Puistola U, Karihtala P. Metformin diminishes the unfavourable impact of Nrf2 in breast cancer patients with type 2 diabetes. Tumour Biol. 2019;41(1):1010428318815413. https://doi.org/10.1177/1010428318815413.

    Article  CAS  PubMed  Google Scholar 

  37. Min W, Wang B, Guo A, Mao G, Zhao Y, Zhang S, et al. The effect of metformin on the clinicopathological features of breast cancer with type 2 diabetes. World J Oncol. 2020;11(1):23–32. https://doi.org/10.14740/wjon1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Esparza-Lopez J, Alvarado-Munoz JF, Escobar-Arriaga E, Ulloa-Aguirre A, de Jesus I-S. Metformin reverses mesenchymal phenotype of primary breast cancer cells through STAT3/NF-kappaB pathways. BMC Cancer. 2019;19(1):728. https://doi.org/10.1186/s12885-019-5945-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yenmis G, YaprakSarac E, Besli N, Soydas T, Tastan C, DilekKancagi D, et al. Anti-cancer effect of metformin on the metastasis and invasion of primary breast cancer cells through mediating NF-kB activity. Acta Histochem. 2021;123(4):151709. https://doi.org/10.1016/j.acthis.2021.151709.

    Article  CAS  PubMed  Google Scholar 

  40. Yenmis G, Besli N, Yaprak Sarac E, Hocaoglu Emre FS, Senol K, Kanigur G. Metformin promotes apoptosis in primary breast cancer cells by downregulation of cyclin D1 and upregulation of P53 through an AMPK-alpha independent mechanism. Turk J Med Sci. 2021;51(2):826–34. https://doi.org/10.3906/sag-1908-112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dias Lopes NM, Marinello PC, Sanches LJ, da Silva Brito WA, Lovo-Martins MI, Pinge-Filho P, et al. Patterns of cell death induced by metformin in human MCF-7 breast cancer cells. Pathol Res Pract. 2020;216(11):153199. https://doi.org/10.1016/j.prp.2020.153199.

    Article  CAS  PubMed  Google Scholar 

  42. • Yang Y, Zhang Z, Chen Q, You Y, Li X, Chen T. Functionalized selenium nanoparticles synergizes with metformin to treat breast cancer cells through regulation of selenoproteins. Front Bioeng Biotechnol. 2021;9:758482. https://doi.org/10.3389/fbioe.2021.758482. This preclinical study investigates the combinatorial treatment of breast cancer cells with metformin and selenium nanoparticles.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • Li Y, Wang D, Ren H, Feng W. Metformin alleviates breast cancer through targeting high-mobility group AT-hook 2. Thorac Cancer. 2020;11(3):686–92. https://doi.org/10.1111/1759-7714.13318. This preclinical study investigates the role of high-mobility group AT-hook 2 in the anti-cancer effects of metformin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alhoshani A, Alotaibi M, As Sobeai HM, Alharbi N, Alhazzani K, Al-Dhfyan A, et al. In vivo and in vitro studies evaluating the chemopreventive effect of metformin on the aryl hydrocarbon receptor-mediated breast carcinogenesis. Saudi J Biol Sci. 2021;28(12):7396–403. https://doi.org/10.1016/j.sjbs.2021.08.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. • Oh S, Cho Y, Chang M, Park S, Kwon H. Metformin Decreases 2-HG Production through the MYC-PHGDH pathway in suppressing breast cancer cell proliferation. Metabolites. 2021;11(8):480. https://doi.org/10.3390/metabo11080480. This preclinical study reports the decrease in the levels of oncometabolite 2HG by metformin in breast cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai H, Everett RS, Thakker DR. Efficacious dose of metformin for breast cancer therapy is determined by cation transporter expression in tumours. Br J Pharmacol. 2019;176(15):2724–35. https://doi.org/10.1111/bph.14694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu Y, Xu T, Xiong Y, Huang J. Metformin inhibits proliferation and promotes apoptosis of HER-2 positive breast cancer cells possibly through the Hippo-YAP pathway. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(5):740–6. https://doi.org/10.12122/j.issn.1673-4254.2022.05.16.

    Article  CAS  PubMed  Google Scholar 

  48. Chen TW, Liang YN, Feng D, Tao LY, Qi K, Zhang HY, et al. Metformin inhibits proliferation and promotes apoptosis of HER2 positive breast cancer cells by downregulating HSP90. J BUON. 2013;18(1):51–6.

    PubMed  Google Scholar 

  49. • Dahmani Z, Addou-Klouche L, Gizard F, Dahou S, Messaoud A, ChahinezDjebri N, et al. Metformin partially reverses the inhibitory effect of co-culture with ER−/PR−/HER2+ breast cancer cells on biomarkers of monocyte antitumor activity. PLoS One. 2020;15(10):e0240982. https://doi.org/10.1371/journal.pone.0240982. This preclinical study investigates the effect of metformin on the co-culture of breast cancer cells and monocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al-Juboori SI, Vadakekolathu J, Idri S, Wagner S, Zafeiris D, Pearson JR, et al. PYK2 promotes HER2-positive breast cancer invasion. J Exp Clin Cancer Res. 2019;38(1):210. https://doi.org/10.1186/s13046-019-1221-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chou PC, Choi HH, Huang Y, Fuentes-Mattei E, Velazquez-Torres G, Zhang F, et al. Impact of diabetes on promoting the growth of breast cancer. Cancer Commun (Lond). 2021;41(5):414–31. https://doi.org/10.1002/cac2.12147.

    Article  PubMed  Google Scholar 

  52. Deng X-S, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, et al. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle. 2012;11(2):367–76. https://doi.org/10.4161/cc.11.2.18813.

    Article  CAS  PubMed  Google Scholar 

  53. Shi B, Hu X, He H, Fang W. Metformin suppresses breast cancer growth via inhibition of cyclooxygenase-2. Oncol Lett. 2021;22(2):615. https://doi.org/10.3892/ol.2021.12876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53(3):333–41. https://doi.org/10.1093/abbs/gmaa180.

    Article  CAS  PubMed  Google Scholar 

  55. • Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40(1):206. https://doi.org/10.1186/s13046-021-02012-7. This preclinical study reports the role of SL7A11 in metformin efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu S, Polsdofer EV, Zhou L, Ruan S, Lyu H, Hou D, et al. Upregulation of endogenous TRAIL-elicited apoptosis is essential for metformin-mediated antitumor activity against TNBC and NSCLC. Mol Ther Oncolytics. 2021;21:303–14. https://doi.org/10.1016/j.omto.2021.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, et al. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 2014;5(6):374–89. https://doi.org/10.1007/s12672-014-0188-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wahdan-Alaswad RS, Salem HS, Edgerton SM, Thor AD. Metformin targets cholesterol biosynthesis pathway, GM1 lipid raft stabilization, EGFR signaling and proliferation in triple negative breast cancers. Cancer Therapy & Oncology International Journal. 2018;9(3):89–98.

    Article  Google Scholar 

  59. Sharma A, Bandyopadhayaya S, Chowdhury K, Sharma T, Maheshwari R, Das A, et al. Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One. 2019;14(1):e0209435. https://doi.org/10.1371/journal.pone.0209435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Teufelsbauer M, Rath B, Plangger A, Staud C, Nanobashvili J, Huk I, et al. Effects of metformin on adipose-derived stromal cell (ADSC) - breast cancer cell lines interaction. Life Sci. 2020;261:118371. https://doi.org/10.1016/j.lfs.2020.118371.

    Article  CAS  PubMed  Google Scholar 

  61. Marinello PC, Panis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA, et al. Oxidative stress and TGF-beta1 induction by metformin in MCF-7 and MDA-MB-231 human breast cancer cells are accompanied with the downregulation of genes related to cell proliferation, invasion and metastasis. Pathol Res Pract. 2020;216(10):153135. https://doi.org/10.1016/j.prp.2020.153135.

    Article  CAS  PubMed  Google Scholar 

  62. • Shao S, Zhao L, An G, Zhang L, Jing X, Luo M, et al. Metformin suppresses HIF-1alpha expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer. FASEB J. 2020;34(8):10860–70. https://doi.org/10.1096/fj.202000951RR. This preclinical study investigates the effect of metformin on breast cancer cells-stromal cross-talk.

    Article  CAS  PubMed  Google Scholar 

  63. Teufelsbauer M, Lang C, Plangger A, Rath B, Moser D, Staud C, et al. Effects of metformin on human bone-derived mesenchymal stromal cell-breast cancer cell line interactions. Med Oncol. 2022;39(5):54. https://doi.org/10.1007/s12032-022-01655-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Repas J, Zugner E, Gole B, Bizjak M, Potocnik U, Magnes C, et al. Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cells reveals adaptive changes in metabolome of detached cells. Sci Rep. 2021;11(1):21354. https://doi.org/10.1038/s41598-021-98642-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zemljic-Jokhadar S, Kokot G, Pavlin M, Derganc J. Adhesion and stiffness of detached breast cancer cells in vitro: co-treatment with metformin and 2-deoxy-d-glucose induces changes related to increased metastatic potential. Biology (Basel). 2021;10(9):873. https://doi.org/10.3390/biology10090873.

    Article  CAS  PubMed  Google Scholar 

  66. Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD. Metformin targets glucose metabolism in triple negative breast cancer. J Oncol Transl Res. 2018;4(1). https://doi.org/10.4172/2476-2261.1000129.

  67. Wahdan-Alaswad R, Fan Z, Edgerton SM, Liu B, Deng XS, Arnadottir SS, et al. Glucose promotes breast cancer aggression and reduces metformin efficacy. Cell Cycle. 2013;12(24):3759–69. https://doi.org/10.4161/cc.26641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varghese S, Samuel SM, Varghese E, Kubatka P, Busselberg D. High glucose represses the anti-proliferative and pro-apoptotic effect of metformin in triple negative breast cancer cells. Biomolecules. 2019;9(1):16. https://doi.org/10.3390/biom9010016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haugrud AB, Zhuang Y, Coppock JD, Miskimins WK. Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res Treat. 2014;147(3):539–50. https://doi.org/10.1007/s10549-014-3128-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hao Q, Huang Z, Li Q, Liu D, Wang P, Wang K, et al. A novel metabolic reprogramming strategy for the treatment of diabetes-associated breast cancer. Adv Sci (Weinh). 2022;9(6):e2102303. https://doi.org/10.1002/advs.202102303.

    Article  CAS  PubMed  Google Scholar 

  71. Mdkhana B, Zaher DM, Abdin SM, Omar HA. Tangeretin boosts the anticancer activity of metformin in breast cancer cells via curbing the energy production. Phytomedicine. 2021;83:153470. https://doi.org/10.1016/j.phymed.2021.153470.

    Article  CAS  PubMed  Google Scholar 

  72. Sorokin D, Shchegolev Y, Scherbakov A, Ryabaya O, Gudkova M, Berstein L, et al. Metformin restores the drug sensitivity of MCF-7 cells resistant derivates via the cooperative modulation of growth and apoptotic-related pathways. Pharmaceuticals (Basel). 2020;13(9):206. https://doi.org/10.3390/ph13090206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, et al. Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat. 2021;185(1):73–84. https://doi.org/10.1007/s10549-020-05927-5. This preclinical study investigates the combinatorial treatment of breast cancer cells with metformin and BMS754807.

    Article  CAS  PubMed  Google Scholar 

  74. Pei X, Wang X, Xian J, Mi J, Gao J, Li X, et al. Metformin and oxyphotodynamic therapy as a novel treatment approach for triple-negative breast cancer. Ann Transl Med. 2020;8(18):1138. https://doi.org/10.21037/atm-20-5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pateliya B, Burade V, Goswami S. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. Eur J Pharmacol. 2021;891:173725. https://doi.org/10.1016/j.ejphar.2020.173725.

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Castillo V, Lopez-Urrutia E, Villanueva-Sanchez O, Avila-Rodriguez MA, Zentella-Dehesa A, Cortes-Gonzalez C, et al. Targeting metabolic remodeling in triple negative breast cancer in a murine model. J Cancer. 2017;8(2):178–89. https://doi.org/10.7150/jca.16387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Long L, Hu X, Li X, Zhou D, Shi Y, Wang L, et al. The anti-breast cancer effect and mechanism of glimepiride-metformin adduct. Onco Targets Ther. 2020;13:3777–88. https://doi.org/10.2147/OTT.S240252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. • Kawakita E, Yang F, Kumagai A, Takagaki Y, Kitada M, Yoshitomi Y, et al. Metformin mitigates DPP-4 inhibitor-induced breast cancer metastasis via suppression of mTOR signaling. Mol Cancer Res. 2021;19(1):61–73. https://doi.org/10.1158/1541-7786.MCR-20-0115. This preclinical study investigates the combinatorial treatment of breast cancer cells with metformin and KR62436.

    Article  CAS  PubMed  Google Scholar 

  79. • Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 2019;568(7751):254–8. https://doi.org/10.1038/s41586-019-1005-x. This preclinical study reports the role of BACH1 in the anti-cancer effects of metformin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27(20):3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim HJ, Kwon H, Lee JW, Kim HJ, Lee SB, Park HS, et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. https://doi.org/10.1186/s13058-015-0574-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wahdan-Alaswad R, Liu B, Thor AD. Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. Cancer Drug Resist. 2020;3(2):179–98. https://doi.org/10.20517/cdr.2019.92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sonnenblick A, Agbor-Tarh D, Bradbury I, Di Cosimo S, Azim HA Jr, Fumagalli D, et al. Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2-positive primary breast cancer: analysis from the ALTTO Phase III Randomized Trial. J Clin Oncol. 2017;35(13):1421–9. https://doi.org/10.1200/jco.2016.69.7722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget. 2018;9(86):35687–704. https://doi.org/10.18632/oncotarget.26286.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Barakat HE, Hussein RRS, Elberry AA, Zaki MA, Ramadan ME. The impact of metformin use on the outcomes of locally advanced breast cancer patients receiving neoadjuvant chemotherapy: an open-labelled randomized controlled trial. Sci Rep. 2022;12(1):7656. https://doi.org/10.1038/s41598-022-11138-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cuyas E, Fernandez-Arroyo S, Buxo M, Pernas S, Dorca J, Alvarez I, et al. Metformin induces a fasting- and antifolate-mimicking modification of systemic host metabolism in breast cancer patients. Aging (Albany NY). 2019;11(9):2874–88. https://doi.org/10.18632/aging.101960.

    Article  CAS  PubMed  Google Scholar 

  87. Lopez-Bonet E, Buxó M, Cuyàs E, Pernas S, Dorca J, Álvarez I, et al. Neoadjuvant metformin added to systemic therapy decreases the proliferative capacity of residual breast cancer. J Clin Med. 2019;8(12):2180. https://doi.org/10.3390/jcm8122180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Abstract GS1-08: CCTGMA. 32, a phase III randomized double-blind placebo controlled adjuvant trial of metformin (MET) vs placebo (PLAC) in early breast cancer (BC): results of the primary efficacy analysis (clinical trials. gov NCT01101438). Cancer Res. 2022;82(4_Supplement):GS1-08-GS1-. https://doi.org/10.1158/1538-7445.SABCS21-GS1-08This abstract shares the outcomes of the CCTGMA. 32 trial.

  89. Goodwin PJ, Parulekar WR, Gelmon KA, Shepherd LE, Ligibel JA, Hershman DL, et al. Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32. J Natl Cancer Inst. 2015;107(3). https://doi.org/10.1093/jnci/djv006.

  90. •• Lusica PMM, Eugenio KPY, Sacdalan DBL, Jimeno CA. A systematic review and meta-analysis on the efficacy and safety of metformin as adjunctive therapy among women with metastatic breast cancer. Cancer Treat Res Commun. 2021;29:100457. https://doi.org/10.1016/j.ctarc.2021.100457. This review article shares the outcomes of the meta-analysis done on clinical trials with metformin against breast cancer.

    Article  PubMed  Google Scholar 

  91. Zhao Y, Gong C, Wang Z, Zhang J, Wang L, Zhang S, et al. A randomized phase II study of aromatase inhibitors plus metformin in pre-treated postmenopausal patients with hormone receptor positive metastatic breast cancer. Oncotarget. 2017;8(48):84224–36. https://doi.org/10.18632/oncotarget.20478.

    Article  PubMed  PubMed Central  Google Scholar 

  92. •• Nanni O, Amadori D, De Censi A, Rocca A, Freschi A, Bologna A, et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res Treat. 2019;174(2):433–42. https://doi.org/10.1007/s10549-018-05070-2. This article shares the outcomes of the MYME trial involving Metformin intake.

    Article  CAS  PubMed  Google Scholar 

  93. Pimentel I, Lohmann AE, Ennis M, Dowling RJO, Cescon D, Elser C, et al. A phase II randomized clinical trial of the effect of metformin versus placebo on progression-free survival in women with metastatic breast cancer receiving standard chemotherapy. Breast. 2019;48:17–23. https://doi.org/10.1016/j.breast.2019.08.003.

    Article  PubMed  Google Scholar 

  94. •• Fenn K, Maurer M, Lee SM, Crew KD, Trivedi MS, Accordino MK, et al. Phase 1 study of erlotinib and metformin in metastatic triple-negative breast cancer. Clin Breast Cancer. 2020;20(1):80–6. This article shares the outcomes of the above clinical trial involving metformin intake.

    Article  CAS  PubMed  Google Scholar 

  95. Yam C, Esteva FJ, Patel MM, Raghavendra AS, Ueno NT, Moulder SL, et al. Efficacy and safety of the combination of metformin, everolimus and exemestane in overweight and obese postmenopausal patients with metastatic, hormone receptor-positive, HER2-negative breast cancer: a phase II study. Invest New Drugs. 2019;37(2):345–51. https://doi.org/10.1007/s10637-018-0700-z.

    Article  CAS  PubMed  Google Scholar 

  96. Park YM, Bookwalter DB, O’Brien KM, Jackson CL, Weinberg CR, Sandler DP. A prospective study of type 2 diabetes, metformin use, and risk of breast cancer. Ann Oncol. 2021;32(3):351–9. https://doi.org/10.1016/j.annonc.2020.12.008.

    Article  CAS  PubMed  Google Scholar 

  97. Leng W, Pu D, Jiang J, Lei X, Wu Q, Chen B. Effect of metformin on breast density in overweight/obese premenopausal women. Diabetes Metab Syndr Obes. 2021;14:4423–32. https://doi.org/10.2147/DMSO.S330625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alipour S, Abedi M, Saberi A, Maleki-Hajiagha A, Faiz F, Shahsavari S, et al. Metformin as a new option in the medical management of breast fibroadenoma; a randomized clinical trial. BMC Endocr Disord. 2021;21(1):169. https://doi.org/10.1186/s12902-021-00824-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–65. https://doi.org/10.1161/CIRCRESAHA.116.308445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nassif RM, Chalhoub E, Chedid P, Hurtado-Nedelec M, Raya E, Dang PM, et al. Metformin inhibits ROS production by human M2 macrophages via the activation of AMPK. Biomedicines. 2022;10(2):319. https://doi.org/10.3390/biomedicines10020319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chung YM, Khan PP, Wang H, Tsai W-B, Qiao Y, Yu B, et al. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer. 2021;9(12). https://doi.org/10.1136/jitc-2021-002772.

  102. Bharath LP, Nikolajczyk BS. The intersection of metformin and inflammation. Am J Physiol Cell Physiol. 2021;320(5):C873–9. https://doi.org/10.1152/ajpcell.00604.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saber MM, Galal MA, Ain-Shoka AA, Shouman SA. Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines. BMC Cancer. 2016;16:126. https://doi.org/10.1186/s12885-016-2157-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71(4):606-20e7. https://doi.org/10.1016/j.molcel.2018.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, et al. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer. 2021;9(12). https://doi.org/10.1136/jitc-2021-002772.

  106. Cai S, Chen Z, Wang Y, Wang M, Wu J, Tong Y, et al. Reducing PD-L1 expression with a self-assembled nanodrug: an alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics. 2021;11(4):1970–81. https://doi.org/10.7150/thno.45777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taghipour F, Oladpour O, Rezayati MT, Khorramdelazad H, Nemati M, Taghipour Z, et al. Modulatory effects of metformin alone and in combination with cimetidine and ibuprofen on T cell-related parameters in a breast cancer model. Iran J Allergy Asthma Immunol. 2021;20(5):600–13. https://doi.org/10.18502/ijaai.v20i5.7410.

    Article  PubMed  Google Scholar 

  108. Haikala HM, Anttila JM, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10(1):620. https://doi.org/10.1038/s41467-019-08541-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gong C, Yu X, Zhang W, Han L, Wang R, Wang Y, et al. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. J Nanobiotechnology. 2021;19(1):58. https://doi.org/10.1186/s12951-021-00805-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tsukioki T, Shien T, Tanaka T, Suzuki Y, Kajihara Y, Hatono M, et al. Influences of preoperative metformin on immunological factors in early breast cancer. Cancer Chemother Pharmacol. 2020;86(1):55–63. https://doi.org/10.1007/s00280-020-04092-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. • Barczyński B, Frąszczak K, Kotarski J. Perspectives of metformin use in endometrial cancer and other gynaecological malignancies. J Drug Target. 2022;30(4):359–67. This review article deliberates on the role of metformin against endometrial cancer.

    Article  PubMed  Google Scholar 

  112. Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan Q, et al. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol. 2018;34(5):428–32.

    Article  CAS  PubMed  Google Scholar 

  113. Lee TY, Martinez-Outschoorn UE, Schilder RJ, Kim CH, Richard SD, Rosenblum NG, et al. Metformin as a therapeutic target in endometrial cancers. Front Oncol. 2018;8:341. https://doi.org/10.3389/fonc.2018.00341.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang Y, Li M-X, Wang H, Zeng Z, Li X-M. Metformin down-regulates endometrial carcinoma cell secretion of IGF-1 and expression of IGF-1R. Asian Pac J Cancer Prev. 2015;16(1):221–5.

    Article  PubMed  Google Scholar 

  115. Sivalingam V, Kitson S, McVey R, Roberts C, Pemberton P, Gilmour K, et al. Measuring the biological effect of presurgical metformin treatment in endometrial cancer. Br J Cancer. 2016;114(3):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mitsuhashi A, Kiyokawa T, Sato Y, Shozu M. Effects of metformin on endometrial cancer cell growth in vivo: a preoperative prospective trial. Cancer. 2014;120(19):2986–95.

    Article  CAS  PubMed  Google Scholar 

  117. Markowska A, Pawałowska M, Filas V, Korski K, Gryboś M, Sajdak S, et al. Does metformin affect ER, PR, IGF-1R, β-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer? Diabetol Metab Syndr. 2013;5(1):1–11.

    Article  Google Scholar 

  118. Gu W, Mitsuhashi A, Kobayashi T, Shozu M. Metformin attenuates the production and proliferative effects of prolactin induced by medroxyprogesterone acetate during fertility-sparing treatment for endometrial cancer. BMC Cancer. 2022;22(1):753. https://doi.org/10.1186/s12885-022-09858-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Singh-Makkar S, Pandav K, Hathaway D III, Paul T, Youssef P. Multidimensional mechanisms of metformin in cancer treatment. Tumori Journal. 2022;108(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  120. Garrido MP, Salvatierra R, Valenzuela-Valderrama M, Vallejos C, Bruneau N, Hernandez A, et al. Metformin reduces NGF-induced tumour promoter effects in epithelial ovarian cancer cells. Pharmaceuticals (Basel). 2020;13(10):315. https://doi.org/10.3390/ph13100315.

    Article  CAS  PubMed  Google Scholar 

  121. Cui Y, Zhou J, Rong F. Combination of metformin and RG7388 enhances inhibition of growth and induction of apoptosis of ovarian cancer cells through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun. 2020;533(4):665–71. https://doi.org/10.1016/j.bbrc.2020.09.135.

    Article  CAS  PubMed  Google Scholar 

  122. Gralewska P, Gajek A, Marczak A, Rogalska A. Metformin affects olaparib sensitivity through induction of apoptosis in epithelial ovarian cancer cell lines. Int J Mol Sci. 2021;22(19):10557. https://doi.org/10.3390/ijms221910557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wen KC, Sung PL, Wu ATH, Chou PC, Lin JH, Huang CF, et al. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J Ovarian Res. 2020;13(1):95. https://doi.org/10.1186/s13048-020-00703-x.

    Article  PubMed  PubMed Central  Google Scholar 

  124. •• Morale MG, Tamura RE, Rubio IGS. Metformin and cancer hallmarks: molecular mechanisms in thyroid, prostate and head and neck cancer models. Biomolecules. 2022;12(3):357. https://doi.org/10.3390/biom12030357. This review article summarizes the effect of metformin against the above cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu Q, Tong D, Liu G, Xu J, Do K, Geary K, et al. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis. 2017;8(8):e3007–e3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, et al. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett. 2017;389:23–32.

    Article  CAS  PubMed  Google Scholar 

  127. Fontana F, Anselmi M, Limonta P. Exploiting the metabolic consequences of PTEN loss and Akt/hexokinase 2 hyperactivation in prostate cancer: a new role for delta-tocotrienol. Int J Mol Sci. 2022;23(9):5269. https://doi.org/10.3390/ijms23095269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tran LNK, Kichenadasse G, Morel KL, Lavranos TC, Klebe S, Lower KM, et al. The Combination of metformin and valproic acid has a greater anti-tumoral effect on prostate cancer growth in vivo than either drug alone. In Vivo. 2019;33(1):99–108. https://doi.org/10.21873/invivo.11445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wilson BE, Armstrong AJ, de Bono J, Sternberg CN, Ryan CJ, Scher HI, et al. Effects of metformin and statins on outcomes in men with castration-resistant metastatic prostate cancer: Secondary analysis of COU-AA-301 and COU-AA-302. Eur J Cancer. 2022;170:296–304. https://doi.org/10.1016/j.ejca.2022.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rêgo DF, Pavan LMC, Elias ST, Canto GDL, Guerra ENS. Effects of metformin on head and neck cancer: a systematic review. Oral Oncol. 2015;51(5):416–22.

    Article  PubMed  Google Scholar 

  131. Sikka A, Kaur M, Agarwal C, Deep G, Agarwal R. Metformin suppresses growth of human head and neck squamous cell carcinoma via global inhibition of protein translation. Cell Cycle. 2012;11(7):1374–82. https://doi.org/10.4161/cc.19798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li H, Chen X, Yu Y, Wang Z, Zuo Y, Li S, et al. Metformin inhibits the growth of nasopharyngeal carcinoma cells and sensitizes the cells to radiation via inhibition of the DNA damage repair pathway. Oncol Rep. 2014;32(6):2596–604.

    Article  CAS  PubMed  Google Scholar 

  133. Tsou Y-A, Chang W-C, Lin C-D, Chang R-L, Tsai M-H, Shih L-C, et al. Metformin increases survival in hypopharyngeal cancer patients with diabetes mellitus: retrospective cohort study and cell-based analysis. Pharmaceuticals. 2021;14(3):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Damelin LH, Jivan R, Veale RB, Rousseau AL, Mavri-Damelin D. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis (thiosemicarbazones). BMC Cancer. 2014;14(1):1–11.

    Article  Google Scholar 

  135. Takei R, Miyashita T, Takada S, Tajima H, Ninomiya I, Takamura H, et al. Dynamic switch of immunity and antitumor effects of metformin in rat spontaneous esophageal carcinogenesis. Cancer Immunol Immunother. 2022;71(4):777–89. https://doi.org/10.1007/s00262-021-03027-x.

    Article  CAS  PubMed  Google Scholar 

  136. Wang L, Du L, Xiong X, Lin Y, Zhu J, Yao Z, et al. Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling. Oncogene. 2021;40(11):1974–87. https://doi.org/10.1038/s41388-021-01682-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Arai J, Niikura R, Hayakawa Y, Kawahara T, Honda T, Hasatani K, et al. Chemoprevention of oesophageal squamous-cell carcinoma and adenocarcinoma: a multicentre retrospective cohort study. Digestion. 2022;103(3):192–204. https://doi.org/10.1159/000520924.

    Article  CAS  PubMed  Google Scholar 

  138. Courtois S, Lehours P, Bessède E. The therapeutic potential of metformin in gastric cancer. Gastric Cancer. 2019;22(4):653–62. https://doi.org/10.1007/s10120-019-00952-w.

    Article  CAS  PubMed  Google Scholar 

  139. Hu Q, Li L, Zou X, Xu L, Yi P. Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4alpha/WNT5A pathway in gastric carcinoma. Front Pharmacol. 2018;9:1150. https://doi.org/10.3389/fphar.2018.01150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zheng J, Santoni G, Xie SH, Lagergren J. Improved prognosis in gastric adenocarcinoma among metformin users in a population-based study. Br J Cancer. 2021;125(2):277–83. https://doi.org/10.1038/s41416-021-01408-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kamarudin MNA, Sarker MMR, Zhou J-R, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res. 2019;38(1):491. https://doi.org/10.1186/s13046-019-1495-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res. 2008;1(5):369–75.

    Article  CAS  Google Scholar 

  143. Zhou X, Xue Y, Zhu B, Sha J. Effects of metformin on proliferation of human colon carcinoma cell line SW-480. J South Med Univ. 2010;30(8):1935–8.

    CAS  Google Scholar 

  144. Bozzi F, Mogavero A, Varinelli L, Belfiore A, Manenti G, Caccia C, et al. MIF/CD74 axis is a target for novel therapies in colon carcinomatosis. J Exp Clin Cancer Res. 2017;36(1):1–15.

    Article  Google Scholar 

  145. Xiao Q, Xiao J, Liu J, Liu J, Shu G, Yin G. Metformin suppresses the growth of colorectal cancer by targeting INHBA to inhibit TGF-beta/PI3K/AKT signaling transduction. Cell Death Dis. 2022;13(3):202. https://doi.org/10.1038/s41419-022-04649-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kang HE, Seo Y, Yun JS, Song SH, Han D, Cho ES, et al. Metformin and niclosamide synergistically suppress Wnt and YAP in APC-mutated colorectal cancer. Cancers (Basel). 2021;13(14):3437. https://doi.org/10.3390/cancers13143437.

    Article  CAS  PubMed  Google Scholar 

  147. Saito A, Kitayama J, Horie H, Koinuma K, Ohzawa H, Yamaguchi H, et al. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci. 2020;111(11):4012–20. https://doi.org/10.1111/cas.14615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cho YH, Ko BM, Kim SH, Myung YS, Choi JH, Han JP, et al. Does metformin affect the incidence of colonic polyps and adenomas in patients with type 2 diabetes mellitus? Intest Res. 2014;12(2):139–45. https://doi.org/10.5217/ir.2014.12.2.139.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kielaite-Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The impact of epithelial-mesenchymal transition and metformin on pancreatic cancer chemoresistance: a pathway towards individualized therapy. Medicina (Kaunas). 2022;58(4):467. https://doi.org/10.3390/medicina58040467.

    Article  Google Scholar 

  150. Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol. 2019;54:50–62. https://doi.org/10.1016/j.semcancer.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  151. Sadeghi N, Abbruzzese JL, Yeung S-CJ, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancermetformin and pancreatic cancer survival. Clin Cancer Res. 2012;18(10):2905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ma R, Yi B, Riker AI, Xi Y. Metformin and cancer immunity. Acta Pharmacol Sin. 2020;41(11):1403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. De Souza A, Khawaja KI, Masud F, Saif MW. Metformin and pancreatic cancer: is there a role? Cancer Chemother Pharmacol. 2016;77(2):235–42.

    Article  PubMed  Google Scholar 

  154. Jin Z, Jia BX, Tan LD, Chen QM, Liu YH. Combination therapy with metformin and IL-12 to inhibit the growth of hepatic carcinoma by promoting apoptosis and autophagy in HepG2-bearing mice. Eur Rev Med Pharmacol Sci. 2020;24(23):12368–79. https://doi.org/10.26355/eurrev_202012_24031.

    Article  CAS  PubMed  Google Scholar 

  155. Yang LY, Shen XT, Sun HT, Zhu WW, Zhang JB, Lu L. Neutrophil extracellular traps in hepatocellular carcinoma are enriched in oxidized mitochondrial DNA which is highly pro-inflammatory and pro-metastatic. J Cancer. 2022;13(4):1261–71. https://doi.org/10.7150/jca.64170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lai HY, Tsai HH, Yen CJ, Hung LY, Yang CC, Ho CH, et al. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front Cell Dev Biol. 2020;8:596655. https://doi.org/10.3389/fcell.2020.596655.

    Article  PubMed  Google Scholar 

  157. Ostwal V, Ramaswamy A, Gota V, Bhargava PG, Srinivas S, Shriyan B, et al. Phase I study evaluating dose de-escalation of sorafenib with metformin and atorvastatin in hepatocellular carcinoma (SMASH). Oncologist. 2022;27(3):165-e222. https://doi.org/10.1093/oncolo/oyab008.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang Q, Kip KE. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97(7):2347–53. https://doi.org/10.1210/jc.2012-1267.

    Article  CAS  PubMed  Google Scholar 

  159. Cho WR, Wang CC, Tsai MY, Chou CK, Liu YW, Wu YJ, et al. Impact of metformin use on the recurrence of hepatocellular carcinoma after initial liver resection in diabetic patients. PLoS One. 2021;16(3):e0247231. https://doi.org/10.1371/journal.pone.0247231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jung WJ, Jang S, Choi WJ, Park J, Choi GH, Jang ES, et al. Metformin administration is associated with enhanced response to transarterial chemoembolization for hepatocellular carcinoma in type 2 diabetes patients. Sci Rep. 2022;12(1):14482. https://doi.org/10.1038/s41598-022-18341-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Song A, Zhang C, Meng X. Mechanism and application of metformin in kidney diseases: an update. Biomed Pharmacother. 2021;138:111454. https://doi.org/10.1016/j.biopha.2021.111454.

    Article  CAS  PubMed  Google Scholar 

  162. Linehan WM, Rouault TA. Molecular pathways: Fumarate hydratase-deficient kidney cancer–targeting the Warburg effect in cancer. Clin Cancer Res. 2013;19(13):3345–52. https://doi.org/10.1158/1078-0432.CCR-13-0304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tseng CH. Use of metformin and risk of kidney cancer in patients with type 2 diabetes. Eur J Cancer. 2016;52:19–25. https://doi.org/10.1016/j.ejca.2015.09.027.

    Article  CAS  PubMed  Google Scholar 

  164. El-Arabey AA. New insight for metformin against bladder cancer. Genes Environ. 2017;39(1):13. https://doi.org/10.1186/s41021-017-0074-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jang JH, Sung EG, Song IH, Lee TJ, Kim JY. Metformin induces caspase-dependent and caspase-independent apoptosis in human bladder cancer T24 cells. Anticancer Drugs. 2020;31(7):655–62. https://doi.org/10.1097/CAD.0000000000000966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shen Z, Xue D, Wang K, Zhang F, Shi J, Jia B, et al. Metformin exerts an antitumor effect by inhibiting bladder cancer cell migration and growth, and promoting apoptosis through the PI3K/AKT/mTOR pathway. BMC Urol. 2022;22(1):79. https://doi.org/10.1186/s12894-022-01027-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Deng J, Peng M, Zhou S, Xiao D, Hu X, Xu S, et al. Metformin targets clusterin to control lipogenesis and inhibit the growth of bladder cancer cells through SREBP-1c/FASN axis. Signal Transduct Target Ther. 2021;6(1):98. https://doi.org/10.1038/s41392-021-00493-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu Y, Zheng Q, Li Y, Wang G, Gao S, Zhang X, et al. Metformin targets a YAP1-TEAD4 complex via AMPKalpha to regulate CCNE1/2 in bladder cancer cells. J Exp Clin Cancer Res. 2019;38(1):376. https://doi.org/10.1186/s13046-019-1346-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hu J, Chen JB, Cui Y, Zhu YW, Ren WB, Zhou X, et al. Association of metformin intake with bladder cancer risk and oncologic outcomes in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(30):e11596. https://doi.org/10.1097/md.0000000000011596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yu Y, Feng C, Kuang J, Guo L, Guan H. Metformin exerts an antitumoral effect on papillary thyroid cancer cells through altered cell energy metabolism and sensitized by BACH1 depletion. Endocrine. 2022;76(1):116–31. https://doi.org/10.1007/s12020-021-02977-7.

    Article  CAS  PubMed  Google Scholar 

  171. Cho YY, Kang MJ, Kim SK, Jung JH, Hahm JR, Kim TH, et al. Protective effect of metformin against thyroid cancer development: a population-based study in Korea. Thyroid. 2018;28(7):864–70. https://doi.org/10.1089/thy.2017.0550.

    Article  CAS  PubMed  Google Scholar 

  172. Garcia-Saenz M, Lobaton-Ginsberg M, Ferreira-Hermosillo A. Metformin in differentiated thyroid cancer: molecular pathways and its clinical implications. Biomolecules. 2022;12(4):574. https://doi.org/10.3390/biom12040574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Anil C, Kut A, Atesagaoglu B, Nar A, Bascil Tutuncu N, Gursoy A. Metformin decreases thyroid volume and nodule size in subjects with insulin resistance: a preliminary study. Med Princ Pract. 2016;25(3):233–6. https://doi.org/10.1159/000442821.

    Article  PubMed  Google Scholar 

  174. Ashrafizadeh M, Mirzaei S, Hushmandi K, Rahmanian V, Zabolian A, Raei M, et al. Therapeutic potential of AMPK signaling targeting in lung cancer: advances, challenges and future prospects. Life Sci. 2021;278:119649.

    Article  CAS  PubMed  Google Scholar 

  175. Barrios-Bernal P, Zatarain-Barrón ZL, Hernández-Pedro N, Orozco-Morales M, Olivera-Ramírez A, Ávila-Moreno F, et al. Will we unlock the benefit of metformin for patients with lung cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals. 2022;15(7):786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen N, Zhou Y-S, Wang L-C, Huang J-B. Advances in metformin-based metabolic therapy for non-small cell lung cancer. Oncol Rep. 2022;47(3):1–12.

    Article  Google Scholar 

  177. Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, et al. Metformin enhances the therapy effects of anti-IGF-1R mAb figitumumab to NSCLC. Sci Rep. 2016;6(1):1–12.

    CAS  Google Scholar 

  178. Li L, Wang T, Hu M, Zhang Y, Chen H, Xu L. Metformin overcomes acquired resistance to EGFR TKIs in EGFR-mutant lung cancer via AMPK/ERK/NF-κB signaling pathway. Front Oncol. 2020;10:1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cao X, Wen Z-S, Wang X-D, Li Y, Liu K-Y, Wang X. The clinical effect of metformin on the survival of lung cancer patients with diabetes: a comprehensive systematic review and meta-analysis of retrospective studies. J Cancer. 2017;8(13):2532.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Levy A, Doyen J. Metformin for non-small cell lung cancer patients: opportunities and pitfalls. Crit Rev Oncol Hematol. 2018;125:41–7.

    Article  PubMed  Google Scholar 

  181. Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, et al. Addition of Metformin to concurrent chemoradiation in patients with locally advanced non–small cell lung cancer: the NRG-LU001 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021;7(9):1324–32. https://doi.org/10.1001/jamaoncol.2021.2318.

    Article  PubMed  Google Scholar 

  182. Jaune E, Rocchi S. Metformin: focus on melanoma. Front Endocrinol (Lausanne). 2018;9:472. https://doi.org/10.3389/fendo.2018.00472.

    Article  PubMed  Google Scholar 

  183. Melnik BC, John SM, Carrera-Bastos P, Schmitz G. MicroRNA-21-Enriched exosomes as epigenetic regulators in melanomagenesis and melanoma progression: the impact of Western lifestyle factors. Cancers (Basel). 2020;12(8):2111. https://doi.org/10.3390/cancers12082111.

    Article  CAS  PubMed  Google Scholar 

  184. Guarnaccia L, Marfia G, Masseroli MM, Navone SE, Balsamo M, Caroli M, et al. Frontiers in anti-cancer drug discovery: challenges and perspectives of metformin as anti-angiogenic add-on therapy in glioblastoma. Cancers (Basel). 2021;14(1):112. https://doi.org/10.3390/cancers14010112.

    Article  CAS  PubMed  Google Scholar 

  185. Kinfe TM, Stadlbauer A, Bozhkov Y, Kremenevski N, Brandner S, Buchfelder M, et al. The diagnostic and therapeutic role of leptin and its receptor ObR in glioblastoma multiforme. Cancers (Basel). 2020;12(12):3691. https://doi.org/10.3390/cancers12123691.

    Article  CAS  PubMed  Google Scholar 

  186. Al Hassan M, Fakhoury I, El Masri Z, Ghazale N, Dennaoui R, El Atat O, et al. Metformin Treatment inhibits motility and invasion of glioblastoma cancer cells. Anal Cell Pathol (Amst). 2018;2018:5917470. https://doi.org/10.1155/2018/5917470.

    Article  CAS  PubMed  Google Scholar 

  187. Korsakova L, Krasko JA, Stankevicius E. Metabolic-targeted combination therapy with dichloroacetate and metformin suppresses glioblastoma cell line growth in vitro and in vivo. In Vivo. 2021;35(1):341. https://doi.org/10.21873/invivo.12265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Menon SS, Yadav N, Yeddala SP, Doucette J, Harris C, Murimi-Worstell IB. PCN6 effects of metformin use on progression-free and overall survival of glioblastoma cancer patients: a systematic review and meta-analysis. Value Health. 2021;24:S19–20. https://doi.org/10.1016/j.jval.2021.04.098.

    Article  Google Scholar 

  189. Fajardo-Orduna GR, Ledesma-Martinez E, Aguiniga-Sanchez I, Mora-Garcia ML, Weiss-Steider B, Santiago-Osorio E. Inhibitors of chemoresistance pathways in combination with Ara-C to overcome multidrug resistance in AML. A mini review. Int J Mol Sci. 2021;22(9):4955. https://doi.org/10.3390/ijms22094955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N, Tyler BM. Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals (Basel). 2022;15(5):626. https://doi.org/10.3390/ph15050626.

    Article  CAS  PubMed  Google Scholar 

  191. Liu L, Patnana PK, Xie X, Frank D, Nimmagadda SC, Rosemann A, et al. High metabolic dependence on oxidative phosphorylation drives sensitivity to metformin treatment in MLL/AF9 acute myeloid leukemia. Cancers (Basel). 2022;14(3):486. https://doi.org/10.3390/cancers14030486.

    Article  CAS  PubMed  Google Scholar 

  192. Glamoclija U, Mahmutovic L, Bilajac E, Soljic V, Vukojevic K, Suljagic M. Metformin and thymoquinone synergistically inhibit proliferation of imatinib-resistant human leukemic cells. Front Pharmacol. 2022;13:867133. https://doi.org/10.3389/fphar.2022.867133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yan JS, Yang MY, Zhang XH, Luo CH, Du CK, Jiang Y, et al. Mitochondrial oxidative phosphorylation is dispensable for survival of CD34(+) chronic myeloid leukemia stem and progenitor cells. Cell Death Dis. 2022;13(4):384. https://doi.org/10.1038/s41419-022-04842-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ye X, Zhang G, Righolt C, Johnston JB, Banerji V, Gibson SB, et al. Metformin is not associated with incidence risk of non-Hodgkin lymphomas among diabetic patientsmetformin not associated with risk of non-Hodgkin lymphomas. Cancer Epidemiol Biomark Prev. 2018;27(5):610–2.

    Article  CAS  Google Scholar 

  195. Tseng C-H. Metformin is associated with a lower risk of non-Hodgkin lymphoma in patients with type 2 diabetes. Diabetes Metab. 2019;45(5):458–64.

    Article  CAS  PubMed  Google Scholar 

  196. Jiang X-N, Zhang Y, Wang W-G, Sheng D, Zhou X-Y, Li X-Q. Alteration of cholesterol metabolism by metformin is associated with improved outcome in type II diabetic patients with diffuse large B-cell lymphoma. Front Oncol. 2021;11:1632.

    Google Scholar 

  197. Yan J-B, Lai C-C, Jhu J-W, Gongol B, Marin TL, Lin S-C, et al. Insulin and metformin control cell proliferation by regulating TDG-mediated DNA demethylation in liver and breast cancer cells. Mol Ther-Oncolytics. 2020;18:282–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rizvi F, Shaukat L, Azhar A, Jafri A, Aslam U, Imran-ul-Haq H. Preclinical meritorious anticancer effects of metformin against breast cancer: an in vivo trial. J Taibah Univ Med Sci. 2021;16(4):504–12.

    PubMed  PubMed Central  Google Scholar 

  199. • Hampsch RA, Wells JD, Traphagen NA, McCleery CF, Fields JL, Shee K, et al. AMPK Activation by metformin promotes survival of dormant ER+ breast cancer cells AMPK in breast cancer dormancy. Clin Cancer Res. 2020;26(14):3707–19. This preclinical study investigates the effect of metformin on dormant breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lord SR, Collins JM, Cheng WC, Haider S, Wigfield S, Gaude E, et al. Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin. Br J Cancer. 2020;122(2):258–65. https://doi.org/10.1038/s41416-019-0665-5.

    Article  CAS  PubMed  Google Scholar 

  201. Cheng L, Zhang X, Huang Y-Z, Zhu Y-L, Xu L-Y, Li Z, et al. Metformin exhibits antiproliferation activity in breast cancer via miR-483-3p/METTL3/m6A/p21 pathway. Oncogenesis. 2021;10(1):1–14.

    Article  Google Scholar 

  202. Wang JC, Li GY, Wang B, Han SX, Sun X, Jiang YN, et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res. 2019;38(1):235. https://doi.org/10.1186/s13046-019-1211-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Farahi A, Abedini MR, Javdani H, Arzi L, Chamani E, Farhoudi R, et al. Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: in vitro and in vivo studies. Mol Cell Biochem. 2021;476(9):3341–51.

    Article  CAS  PubMed  Google Scholar 

  204. Wang G, Dong Y, Liu H. Curcumol enhances the anti-tumor effects of metformin via suppressing epithelial-mesenchymal transition in triple-negative breast cancer. Ann Transl Med. 2020;8(15). https://doi.org/10.21037/atm-20-5438.

  205. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125(Pt 5):1259–73. https://doi.org/10.1242/jcs.095299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sourbier C, Ricketts CJ, Matsumoto S, Crooks DR, Liao PJ, Mannes PZ, et al. Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell. 2014;26(6):840–50. https://doi.org/10.1016/j.ccell.2014.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ashrafizadeh M, Mirzaei S, Hushmandi K, Rahmanian V, Zabolian A, Raei M, et al. Therapeutic potential of AMPK signaling targeting in lung cancer: advances, challenges and future prospects. Life Sci. 2021;278:119649. https://doi.org/10.1016/j.lfs.2021.119649.

    Article  CAS  PubMed  Google Scholar 

  208. Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, et al. Metformin enhances the therapy effects of anti-IGF-1R mAb figitumumab to NSCLC. Sci Rep. 2016;6:31072. https://doi.org/10.1038/srep31072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cao X, Wen ZS, Wang XD, Li Y, Liu KY, Wang X. The clinical effect of metformin on the survival of lung cancer patients with diabetes: a comprehensive systematic review and meta-analysis of retrospective studies. J Cancer. 2017;8(13):2532–41. https://doi.org/10.7150/jca.19750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Demirsoy IH, Ertural DY, Balci S, Cinkir U, Sezer K, Tamer L, et al. Profiles of circulating MiRNAs following metformin treatment in patients with type 2 diabetes. J Med Biochem. 2018;37(4):499–506. https://doi.org/10.2478/jomb-2018-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tapia E, Villa-Guillen DE, Chalasani P, Centuori S, Roe DJ, Guillen-Rodriguez J, et al. A randomized controlled trial of metformin in women with components of metabolic syndrome: intervention feasibility and effects on adiposity and breast density. Breast Cancer Res Treat. 2021;190(1):69–78. https://doi.org/10.1007/s10549-021-06355-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martinez JA, Chalasani P, Thomson CA, Roe D, Altbach M, Galons JP, et al. Phase II study of metformin for reduction of obesity-associated breast cancer risk: a randomized controlled trial protocol. BMC Cancer. 2016;16:500. https://doi.org/10.1186/s12885-016-2551-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ibrahim OM, Alhassanin SA, Essa ES, Mostafa TM. Metformin as an adjuvant therapy to an aromatase inhibitor in overweight and obese postmenopausal women with breast cancer: a pilot study. 2022. https://doi.org/10.21203/rs.3.rs-1365471/v1.

  214. •• Yam C, Esteva FJ, Patel MM, Raghavendra AS, Ueno NT, Moulder SL, et al. Efficacy and safety of the combination of metformin, everolimus and exemestane in overweight and obese postmenopausal patients with metastatic, hormone receptor-positive, HER2-negative breast cancer: a phase II study. Invest New Drugs. 2019;37(2):345–51. This article shares the outcomes of the above clinical trial associated with metformin intake.

    Article  CAS  PubMed  Google Scholar 

  215. Anindita D, Gowthamarajan K. Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer. 2020;44(1):100488. https://doi.org/10.1016/j.currproblcancer.2019.06.003.

    Article  Google Scholar 

  216. Ballinger T. Abstract P1–13–03: Prospective, placebo-controlled, randomized study of metformin for breast cancer prevention in overweight/ obese women. Cancer Res 2020.  https://doi.org/10.1158/1538-7445.SABCS19-P1-13-03.

  217. • Kim J, Han W, Kim E-K, Jung Y, Kim H-A, Chae SM, et al. Phase II randomized study of neoadjuvant metformin plus letrozole versus placebo plus letrozole for ER-positive postmenopausal breast cancer [METEOR Study]. Am Soc Clin Oncol; 2019;37:15_suppl, 576-576. https://doi.org/10.1200/JCO.2019.37.15_suppl.576. This article shares the outcomes of the METEOR clinical trial associated with metformin intake.

  218. Kim J, Lim W, Kim E-K, Kim M-K, Paik N-S, Jeong S-S, et al. Phase II randomized trial of neoadjuvant metformin plus letrozole versus placebo plus letrozole for estrogen receptor positive postmenopausal breast cancer (METEOR). BMC Cancer. 2014;14(1):1–5.

    Article  Google Scholar 

  219. Ko K-P, Ma SH, Yang J-J, Hwang Y, Ahn C, Cho Y-M, et al. Metformin intervention in obese non-diabetic patients with breast cancer: phase II randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat. 2015;153(2):361–70.

    Article  CAS  PubMed  Google Scholar 

  220. Leon-Gonzalez AJ, Jimenez-Vacas JM, Fuentes-Fayos AC, Sarmento-Cabral A, Herrera-Martínez AD, Gahete MD, et al. Role of metformin and other metabolic drugs in the prevention and therapy of endocrine-related cancers. Curr Opin Pharmacol. 2021;60:17–26.

    Article  CAS  PubMed  Google Scholar 

  221. Sehdev A, Zha Y, Karrison TG, Janisch LA, Cohen EE, Maitland ML, et al. A pharmacodynamic study of sirolimus and metformin in patients with advanced solid tumors. Am Soc Clin Oncol. 2017;82:309–17.

    Google Scholar 

  222. Barton D. Journey to Oz in search of a remedy for fatigue. Cancer J. 2014;20(1):15–7.

    Article  PubMed  Google Scholar 

  223. Samuel SM, Varghese E, Kubatka P, Triggle CR, Büsselberg D. Metformin: the answer to cancer in a flower? Current knowledge and future prospects of metformin as an anti-cancer agent in breast cancer. Biomolecules. 2019;9(12):846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sundelin EIO, Al-Suliman N, Vahl P, Vendelbo M, Munk OL, Jakobsen S, et al. Metformin is distributed to tumor tissue in breast cancer patients in vivo: a 11C-metformin PET/CT study. Breast Cancer Res Treat. 2020;181(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  225. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR, et al. Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res. 2015;17(1):32. https://doi.org/10.1186/s13058-015-0540-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lord SR, Cheng WC, Liu D, Gaude E, Haider S, Metcalf T, et al. Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer. Cell Metab. 2018;28(5):679-88.e4. https://doi.org/10.1016/j.cmet.2018.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ralli GP, Carter RD, McGowan DR, Cheng WC, Liu D, Teoh EJ, et al. Radiogenomic analysis of primary breast cancer reveals [18F]-fluorodeoxglucose dynamic flux-constants are positively associated with immune pathways and outperform static uptake measures in associating with glucose metabolism. Breast Cancer Res. 2022;24(1):34. https://doi.org/10.1186/s13058-022-01529-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Semiglazova T, Osipov M, Krivorotko P, Protsenko S, Semiglazov V, Donskih R, et al. Neoadjuvant endocrine therapy in combination with melatonin and metformin in locally advanced breast cancer. Ann Oncol. 2019;30:v99–100.

    Article  Google Scholar 

  229. Semiglazova T, Osipov M, Krivorotko P, Semiglazov V, Protsenko S, Berstein L, et al. Melatonin and metformin in neoadjuvant chemotherapy in locally advanced breast cancer. Ann Oncol. 2019;30: v100.

    Article  Google Scholar 

  230. Barakat HE, Hussein RR, Elberry AA, Zaki MA, Ramadan ME. The impact of metformin use on the outcomes of locally advanced breast cancer patients receiving neoadjuvant chemotherapy: an open-labelled randomized controlled trial. Sci Rep. 2022;12(1):1–16.

    Article  Google Scholar 

  231. Lee TY, Martinez-Outschoorn UE, Schilder RJ, Kim CH, Richard SD, Rosenblum NG, et al. Metformin as a therapeutic target in endometrial cancers. Front Oncol. 2018;8:341.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Heckman-Stoddard BM, Gandini S, Puntoni M, Dunn BK, DeCensi A, Szabo E. Repurposing old drugs to chemoprevention: the case of metformin. Semin Oncol: Elsevier; 2016. p. 123–33. https://doi.org/10.1053/j.seminoncol.2015.09.009.

  233. Pimentel I, Lohmann AE, Ennis M, Dowling RJ, Cescon D, Elser C, et al. A phase II randomized clinical trial of the effect of metformin versus placebo on progression-free survival in women with metastatic breast cancer receiving standard chemotherapy. The Breast. 2019;48:17–23.

    Article  PubMed  Google Scholar 

  234. Rabea H, Hassan A, Elberry AA. Metformin as an adjuvant treatment in non-diabetic metastatic breast cancer. Bahrain Med Bull. 2021;43(2):477–481.

  235. Gennari A, Foca F, Zamarchi R, Rocca A, Amadori D, De Censi A, et al. Insulin-like growth factor-1 receptor (IGF-1R) expression on circulating tumor cells (CTCs) and metastatic breast cancer outcome: results from the TransMYME trial. Breast Cancer Res Treat. 2020;181(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  236. Nanni O, Amadori D, De Censi A, Rocca A, Freschi A, Bologna A, et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res Treat. 2019;174(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  237. Rocca A, Cortesi P, Cortesi L, Gianni L, Matteucci F, Fantini L, et al. Phase II study of liposomal doxorubicin, docetaxel and trastuzumab in combination with metformin as neoadjuvant therapy for HER2-positive breast cancer. Ther Adv Med Oncol. 2021;13:1758835920985632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Andrzejewski S, Siegel PM, St-Pierre J. Metabolic profiles associated with metformin efficacy in cancer. Front Endocrinol. 2018;9:372.

    Article  Google Scholar 

  239. Sonnenblick A, Agbor-Tarh D, Bradbury I, Di Cosimo S, Azim HA Jr, Fumagalli D, et al. Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2–positive primary breast cancer: analysis from the ALTTO Phase III randomized trial. J Clin Oncol. 2017;35(13):1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Dowling RJ, Parulekar WR, Gelmon KA, Shepherd LE, Virk S, Ennis M, et al. CA15-3/MUC1 in CCTG MA-32 (NCT01101438): a phase III RCT of the effect of metformin vs. placebo on invasive disease free and overall survival in early stage breast cancer (BC). Am Soc Clin Oncol; 2018:15_suppl, 557–557. https://doi.org/10.1200/JCO.2018.36.15_suppl.557.

  241. Vernieri C, Ligorio F, Zattarin E, Rivoltini L, de Braud F. Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun. 2020;11(1):1–4.

    Article  Google Scholar 

  242. Litzenburger BC, Brown PH. Advances in preventive therapy for estrogen-receptor-negative breast cancer. Current Breast Cancer Reports. 2014;6(2):96–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Jones VC, Dietze EC, Jovanovic-Talisman T, McCune JS, Seewaldt VL. Metformin and chemoprevention: Potential for heart-healthy targeting of biologically aggressive breast cancer. Front Public Health. 2020;8:509714.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Mackenzie MJ, Winquist E, Ernst S, Johnson C, O’Brien P. A phase I study of temsirolimus in combination with metformin in advanced solid tumors. Clin Cancer Res. 2008;14(15_Supplement):B1–B1.

    Google Scholar 

Download references

Funding

The authors acknowledge the support of the Kevin and Lorie Haarberg Funds for Cancer Research to KR.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: K.R and MI.K. Acquisition of data/literature survey: MI.K, R.K, and L.B. Analysis and interpretation of data: K.R, MI.K, and R.K. Write and revise/review of MS: K.R, MI.K, R.K, and L.B.

Corresponding author

Correspondence to Komal Raina.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.I., Kumar, R., Bugata, L.S.P. et al. Anti-cancer Efficacy of Metformin: Recent Updates on Breast and Other Cancers. Curr. Pharmacol. Rep. 9, 284–328 (2023). https://doi.org/10.1007/s40495-023-00336-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00336-w

Keywords

Navigation