Skip to main content
Log in

Bioinformatics Tools for the Interpretation of Metabolomics Data

  • Pharmacometabolomics and Toxicometabolomics (Chi Chen, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolomics is a rapidly evolving field that generates large and complex datasets. Bioinformatics becomes critical towards the extraction of meaningful biological information. In this article, we briefly review computational approaches that have been well accepted in the field, and discuss the development of new methods and tools to interpret metabolomics data.

Recent Findings

Significant progress has been made in computational metabolomics over the past years. This includes methods that are used to preprocess data generated by instruments, to annotate metabolites, to carry out statistical analyses, to identify perturbed metabolic pathways, and to integrate metabolomics with other omics data. Each of these topics is discussed in respective sections of this review.

Summary

Bioinformatics tools used for metabolomics remain a highly active research area. An ecosystem is emerging with software libraries, standalone tools, and web-based tools and services. While some require bioinformatics training, many of them are user friendly and easily accessible. Much further development is still needed to serve the metabolomics field and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Go Y-M, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol Sci Off J Soc Toxicol. 2015;148:531–43.

    Article  CAS  Google Scholar 

  2. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal ChemAnal Chem. 2016;88:524–45.

    Article  CAS  Google Scholar 

  3. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G. Bioinformatics: the next frontier of metabolomics. Anal ChemAnal Chem. 2015;87:147–56.

    Article  CAS  Google Scholar 

  4. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal ChemAnal Chem. 2006;78:779–87.

    Article  CAS  Google Scholar 

  5. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, et al. OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics. 2008;9:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jiang W, Qiu Y, Ni Y, Su M, Jia W, Du X. An automated data analysis pipeline for GC-TOF-MS metabonomics studies. J Proteome Res. 2010;9:5974–81.

    Article  CAS  PubMed  Google Scholar 

  9. Yu T, Park Y, Johnson JM, Jones DP. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics. 2009;25:1930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clasquin MF, Melamud E, Rabinowitz JD. LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2012; 0 14:Unit14.11.

  11. Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinforma Oxf Engl. 2008;24:2534–6.

    Article  CAS  Google Scholar 

  12. Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, et al. mzML—a community standard for mass spectrometry data. Mol Cell Proteomics MCP. 2011;10:R110.000133.

    Article  PubMed  Google Scholar 

  13. Myers OD, Sumner SJ, Li S, Barnes S, Du X. Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data. Anal Chem. 2017;89:8689–95.

  14. Uppal K, Walker DI, Liu K, Li S, Go Y-M, Jones DP. Computational metabolomics: a framework for the million metabolome. Chem Res Toxicol. 2016;29:1956–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jolliffe I. Principal component analysis. Wiley StatsRef Stat. Ref. Online [Internet]. Hoboken, New Jersey: John Wiley & Sons, Ltd; 2014. [cited 2017 Apr 18]. Available from: https://doi.org/10.1002/9781118445112.stat06472/abstract.

    Google Scholar 

  16. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics Off J Metabolomic Soc. 2007;3:211–21.

    CAS  Google Scholar 

  17. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007;3:231–41.

    Article  CAS  Google Scholar 

  18. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9:e1003123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, et al. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology. 2012;295:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roede JR, Park Y, Li S, Strobel FH, Jones DP. Detailed mitochondrial phenotyping by high resolution metabolomics. PLoS ONE. 2012;7:e33020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frediani JK, Jones DP, Tukvadze N, Uppal K, Sanikidze E, Kipiani M, et al. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study. PLoS ONE. 2014;9:e108854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schmidt H, Günther C, Weber M, Spörlein C, Loscher S, Böttcher C, et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE. 2014;9:e102444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Leuthold P, Schaeffeler E, Winter S, Büttner F, Hofmann U, Mürdter TE, et al. Comprehensive metabolomic and lipidomic profiling of human kidney tissue: a platform comparison. J Proteome Res. 2017;16:933–44.

    Article  CAS  PubMed  Google Scholar 

  24. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS. Serum lipidomics profiling using LC–MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal ChemAnal Chem. 2011;83:6648–57.

    Article  CAS  Google Scholar 

  25. Khrameeva EE, Bozek K, He L, Yan Z, Jiang X, Wei Y, et al. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun. 2014;5 ncomms4584

  26. Al-Mubarak R, Heiden JV, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis. PLoS Negl Trop Dis. 2011;5:e1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.

    Article  CAS  PubMed  Google Scholar 

  28. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14.

    Article  CAS  PubMed  Google Scholar 

  29. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008;26:162–4.

    Article  CAS  PubMed  Google Scholar 

  30. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Foster JM, Moreno P, Fabregat A, Hermjakob H, Steinbeck C, Apweiler R, et al. LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics. PLoS ONE. 2013;8:e61951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36:D344–50.

    Article  CAS  PubMed  Google Scholar 

  36. Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, Lin W, et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour “rules”. BMC Bioinformatics. 2009;10:227.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou B, Wang J, Ressom HW. MetaboSearch: tool for mass-based metabolite identification using multiple databases. PLoS ONE. 2012;7:e40096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of LC/MS data sets. Anal ChemAnal Chem. 2012;84:283–9.

    Article  CAS  Google Scholar 

  39. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal ChemAnal Chem. 2014;86:6812–7.

    Article  CAS  Google Scholar 

  40. Uppal K, Walker DI, Jones DP. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal ChemAnal Chem. 2017;89:1063–7.

    Article  CAS  Google Scholar 

  41. Daly R, Rogers S, Wandy J, Jankevics A, Burgess KEV, Breitling R. MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach. Bioinformatics. 2014;30:2764–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10:755–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal ChemAnal Chem. 2006;78:2262–7.

    Article  CAS  Google Scholar 

  45. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Haynes W. Student’s t-test. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H, editors. Encycl Syst Biol. New York: Springer; 2013. [Internet]. [cited 2017 Apr 18]. p. 2023–5. Available from: http://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_1184.

    Google Scholar 

  47. MacFarland TW, Yates JM. Mann–Whitney U Test. In: Introd. Nonparametric Stat. Biol. Sci. Using R. New York City: Springer International Publishing; 2016. [Internet], [cited 2017 Apr 18]. p 103–32. Available from: http://link.springer.com/chapter/10.1007/978-3-319-30634-6_4.

    Chapter  Google Scholar 

  48. Iversen GR, Norpoth H. Analysis of variance. Thousand Oaks: SAGE; 1987.

    Book  Google Scholar 

  49. Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. Hoboken: John Wiley & Sons; 2015.

    Google Scholar 

  50. Gordon A, Glazko G, Qiu X, Yakovlev A. Control of the mean number of false discoveries, Bonferroni and stability of multiple testing. Ann Appl Stat. 2007;1:179–90.

    Article  Google Scholar 

  51. Wold H. Partial least squares, Encycl Stat Sci. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2004. [Internet] [cited 2017 Apr 18]. Available from: https://doi.org/10.1002/0471667196.ess1914.pub2/abstract.

    Book  Google Scholar 

  52. Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166–73.

    Article  CAS  Google Scholar 

  53. Chun H, Keleş S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Ser B Stat Methodol. 2010;72:3–25.

    Article  Google Scholar 

  54. Murtagh F. A survey of recent advances in hierarchical clustering algorithms. Comput J. 1983;26:354–9.

    Article  Google Scholar 

  55. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 1998;95:14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002;16:119–28.

    Article  CAS  Google Scholar 

  57. Breiman L. Random Forests Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  58. Noble WS. Support vector machine applications in computational biology. Kernel Methods Comput Biol. Cambridge: MIT Press. 2004:71–92.

  59. Liang Y-J, Lin Y-T, Chen C-W, Lin C-W, Chao K-M, Pan W-H, et al. SMART: statistical metabolomics analysis—an R tool. Anal Chem. 2016;88:6334–41.

  60. Costa C, Maraschin M, Rocha M. An R package for the integrated analysis of metabolomics and spectral data. Comput Methods Prog Biomed. 2016;129:117–24.

    Article  Google Scholar 

  61. Aggio R, Villas-Bôas SG, Ruggiero K. Metab: an R package for high-throughput analysis of metabolomics data generated by GC-MS. Bioinforma Oxf Engl. 2011;27:2316–8.

    Article  CAS  Google Scholar 

  62. Kiefer P, Schmitt U, Vorholt JA. eMZed: an open source framework in Python for rapid and interactive development of LC/MS data analysis workflows. Bioinforma Oxf Engl. 2013;29:963–4.

    Article  CAS  Google Scholar 

  63. Fitzpatrick MA, McGrath CM, Young SP. Pathomx: an interactive workflow-based tool for the analysis of metabolomic data. BMC Bioinformatics. 2014;15:396.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2010;38:D473–9.

    Article  CAS  PubMed  Google Scholar 

  65. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31:419–25.

    Article  CAS  PubMed  Google Scholar 

  66. Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, et al. Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinforma Oxf Engl. 2010;26:971–3.

    Article  CAS  Google Scholar 

  67. Kastenmüller G, Römisch-Margl W, Wägele B, Altmaier E, Suhre K. metaP-server: a web-based metabolomics data analysis tool. J Biomed Biotechnol. 2011;2011:839862. Available from: https://doi.org/10.1155/2011/839862.

  68. Biswas A, Mynampati KC, Umashankar S, Reuben S, Parab G, Rao R, et al. MetDAT: a modular and workflow-based free online pipeline for mass spectrometry data processing, analysis and interpretation. Bioinforma Oxf Engl. 2010;26:2639–40.

    Article  CAS  Google Scholar 

  69. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinforma Oxf Engl. 2010;26:2342–4.

    Article  CAS  Google Scholar 

  70. Cottret L, Wildridge D, Vinson F, Barrett MP, Charles H, Sagot M-F, et al. MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 2010;38:W132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38:W71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoffman JM, Soltow QA, Li S, Sidik A, Jones DP, Promislow DEL. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell. 2014;13:596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu X, Araki K, Li S, Han J-H, Ye L, Tan WG, et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol. 2014;15:1152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS, et al. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science. 2014;343:313–7.

    Article  CAS  PubMed  Google Scholar 

  75. Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, et al. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome. 2016;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chandler JD, Hu X, Ko E-J, Park S, Lee Y-T, Orr M, et al. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Phys Regul Integr Comp Phys. 2016;311:R906–16.

    Google Scholar 

  77. Jin R, Banton S, Tran VT, Konomi JV, Li S, Jones DP, et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease—an untargeted, high resolution metabolomics study. J Pediatr. 2016;172:14–19.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walker DI, Uppal K, Zhang L, Vermeulen R, Smith M, Hu W, et al. High-resolution metabolomics of occupational exposure to trichloroethylene. Int J Epidemiol. 2016;45:1517–27.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, et al. Systems biology guided by XCMS online metabolomics. Nat Methods. 2017;14:461–2.

    Article  CAS  PubMed  Google Scholar 

  80. Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS, et al. Metabolic phenotypes of response to vaccination in humans. Cell. 2017;169:862–877.e17.

    Article  CAS  PubMed  Google Scholar 

  81. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS online: a web-based platform to process untargeted metabolomic data. Anal ChemAnal Chem. 2012;84:5035–9.

    Article  CAS  Google Scholar 

  82. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40:W127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinforma Oxf Engl. 2015;31:1493–5.

    Article  CAS  Google Scholar 

  86. Davidson RL, Weber RJM, Liu H, Sharma-Oates A, Viant MR. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience. 2016:5. [Internet],Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765054/

  87. Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: a toolbox for metabolomic data analysis, interpretation and integrative exploration. PLoS ONE. 2017;12:e0171046.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, et al. Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal ChemAnal Chem. 2014;86:6931–9.

    Article  CAS  Google Scholar 

  89. Xia J, Sinelnikov IV, Wishart DS. MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets. Bioinforma Oxf Engl. 2011;27:2455–6.

    Article  CAS  Google Scholar 

  90. Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics Off J Metabolomic Soc. 2013;9:280–99.

    CAS  Google Scholar 

  91. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1.

    Article  CAS  PubMed  Google Scholar 

  92. Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, et al. Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res. 2015;43:W117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cavill R, Jennen D, Kleinjans J, Briedé JJ. Transcriptomic and metabolomic data integration. Brief Bioinform. 2016;17:891–901.

    Article  PubMed  Google Scholar 

  94. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ebbels TMD, Cavill R. Bioinformatic methods in NMR-based metabolic profiling. Prog Nucl Magn Reson Spectrosc. 2009;55:361–74.

    Article  CAS  Google Scholar 

  96. Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim Y-M, Metz TO, et al. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol. 2012;8:558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Thomas CE, Ganji G. Integration of genomic and metabonomic data in systems biology—are we “there” yet? Curr Opin Drug Discov Devel. 2006;9:92–100.

    CAS  PubMed  Google Scholar 

  98. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534–45.

    Article  CAS  PubMed  Google Scholar 

  100. Kastenmüller G, Raffler J, Gieger C, Suhre K. Genetics of human metabolism: an update. Hum Mol Genet. 2015;24:R93–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Adamski J. Genome-wide association studies with metabolomics. Genome Med. 2012;4:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mastrokolias A, Pool R, Mina E, Hettne KM, van Duijn E, van der Mast RC, et al. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington’s disease peripheral blood samples. Metabolomics Off J Metabolomic Soc. 2016;12:137.

    Google Scholar 

  103. de Tayrac M, Lê S, Aubry M, Mosser J, Husson F. Simultaneous analysis of distinct omics data sets with integration of biological knowledge: multiple factor analysis approach. BMC Genomics. 2009;10:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lê Cao K-A, Martin PG, Robert-Granié C, Besse P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics. 2009;10:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lin D, Zhang J, Li J, Calhoun VD, Deng H-W, Wang Y-P. Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics. 2013;14:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Safo SE, Li S, Long Q. Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics. 2017. https://doi.org/10.1111/biom.12715.

  107. Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J Cell Mol Biol. 2007;52:1181–91.

    Article  CAS  Google Scholar 

  108. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform. 2016;17:628–41.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Krumsiek J, Bartel J, Theis FJ. Computational approaches for systems metabolomics. Curr Opin Biotechnol. 2016;39:198–206.

    Article  CAS  PubMed  Google Scholar 

  111. Lê Cao K-A, González I, Déjean S. integrOmics: an R package to unravel relationships between two omics datasets. Bioinforma Oxf Engl. 2009;25:2855–6.

    Article  CAS  Google Scholar 

  112. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wahl S, Vogt S, Stückler F, Krumsiek J, Bartel J, Kacprowski T, et al. Multi-omic signature of body weight change: results from a population-based cohort study. BMC Med. 2015;13:48.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Martin J-C, Maillot M, Mazerolles G, Verdu A, Lyan B, Migné C, et al. Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics. 2015;11:807–21.

    Article  CAS  PubMed  Google Scholar 

  115. May JC, McLean JA. Advanced multidimensional separations in mass spectrometry: navigating the big data deluge. Annu Rev Anal ChemPalo Alto Calif. 2016;9:387–409.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cecilia Villaveces for editorial assistance.

Funding Information

This work was supported by National Institutes of Health (NIAID HHSN272201200031C, HHSN272201300018I, UH2AI132345, NIEHS P30 ES019776, U2CES026560, P50ES026071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhao Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacometabolomics and Toxicometabolomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardinassi, L.G., Xia, J., Safo, S. et al. Bioinformatics Tools for the Interpretation of Metabolomics Data. Curr Pharmacol Rep 3, 374–383 (2017). https://doi.org/10.1007/s40495-017-0107-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-017-0107-0

Keywords

Navigation