Skip to main content
Log in

A systematic review of machine learning based thyroid tumor characterisation using ultrasonographic images

  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Ultrasonography is widely used to screen thyroid tumors because it is safe, easy to use, and low-cost. However, it is simultaneously affected by speckle noise and other artifacts, so early detection of thyroid abnormalities becomes difficult for the radiologist. Therefore, various researchers continuously address the limitations of sonography and improve the diagnosis potential of US images for thyroid tissue from the last three decays. Accordingly, the present study extensively reviewed various CAD systems used to classify thyroid tumor US (TTUS) images related to datasets, despeckling algorithms, segmentation algorithms, feature extraction and selection, assessment parameters, and classification algorithms. After the exhaustive review, the achievements and challenges have been reported, and build a road map for the new researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data available on request due to privacy/ethical restrictions.

References

  1. Papini E, Monpeyssen H, Frasoldati A, Hegedüs L (2020) 2020 European thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur Thyroid J 9:172–185. https://doi.org/10.1159/000508484

    Article  PubMed  PubMed Central  Google Scholar 

  2. Di RGC (2019) Good clinical practice advice: thyroid and pregnancy. Int J Gynecol Obstet 144:347–351. https://doi.org/10.1002/ijgo.12745

    Article  Google Scholar 

  3. Nagataki S, Nyström E (2002) Epidemiology and primary prevention of thyroid cancer. Thyroid 12:889–896. https://doi.org/10.1089/105072502761016511

    Article  PubMed  Google Scholar 

  4. Moon W, Baek JH, Jung SL et al (2011) Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations NODULES. Korean J Radiol 12:1–14. https://doi.org/10.3348/kjr.2011.12.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Russ G (2016) Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 35:25–38. https://doi.org/10.14366/usg.15027

    Article  PubMed  Google Scholar 

  6. Chaudhary V, Bano S (2013) Thyroid ultrasound. Indian J Endocrinol Metab 17:219–227. https://doi.org/10.4103/2230-8210.109667

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoang JK, Sosa JA, Nguyen XV et al (2014) Imaging thyroid disease: updates, imaging approach, and management pearls. Radiol Clin North Am 53:145–161. https://doi.org/10.1016/j.rcl.2014.09.002

    Article  PubMed  Google Scholar 

  8. Chung R, Kim D (2019) Imaging of thyroid nodules. Appl Radiol 48:16–26

    Article  Google Scholar 

  9. Zahir ST, Vakili M, Ghaneei A et al (2016) Ultrasound assistance in differentiating malignant thyroid nodules from benign ones. J Ayub Med Coll Abbottabad 28:644–649

    PubMed  Google Scholar 

  10. Yadav N, Dass R, Virmani J (2022) Despeckling filters applied to thyroid ultrasound images: a comparative analysis. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-11965-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dass R (2018) Speckle noise reduction of ultrasound images using BFO cascaded with wiener filter and discrete wavelet transform in homomorphic region. Procedia Comput Sci 132:1543–1551. https://doi.org/10.1016/j.procs.2018.05.118

    Article  Google Scholar 

  12. Pedraza L, Vargas C, Narváez F et al (2015) An open access thyroid ultrasound image database. In: 10th Int Symp Med Inf Process Anal 9287:92870W1–6. https://doi.org/10.1117/12.2073532

  13. (2018) https://www.ultrasoundcases.info/cases/head-and-neck/thyroid-gland/

  14. Yadav N, Dass R, Virmani J (2022) Objective assessment of segmentation models for thyroid ultrasound images. J Ultrasound. https://doi.org/10.1007/s40477-022-00726-8

    Article  PubMed  Google Scholar 

  15. Poudel P, Illanes A, Sheet D, Friebe M (2018) Evaluation of commonly used algorithms for thyroid ultrasound images segmentation and improvement using machine learning approaches. Hindawi J Healthc Eng 2018:1–13. https://doi.org/10.1155/2018/8087624

    Article  Google Scholar 

  16. Kollorz E, Angelopoulou E, Beck M et al (2011) Using power watersheds to segment benign thyroid nodules in ultrasound image data. Bild für die Medizin (Inform aktuell). Springer, Berlin, Heidelberg, pp 124–128. https://doi.org/10.1007/978-3-642-19335-4_27

    Chapter  Google Scholar 

  17. Prabha DS, Kumar JS (2016) Performance evaluation of image segmentation using objective methods. Indian J Sci Technol 9:1–8. https://doi.org/10.17485/ijst/2016/v9i8/87907

    Article  Google Scholar 

  18. Guo Y, Jiang SQ, Sun B et al (2017) Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video. Heal Inf Sci Syst 5:1–7. https://doi.org/10.1007/s13755-017-0032-y

    Article  Google Scholar 

  19. Kollorz ENK, Hahn DA, Linke R et al (2008) Quantification of thyroid volume using 3-D ultrasound imaging. IEEE Trans Med Imaging 27:457–466. https://doi.org/10.1109/TMI.2007.907328

    Article  CAS  PubMed  Google Scholar 

  20. Kriti, Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng. https://doi.org/10.1016/j.bbe.2019.02.004

    Article  Google Scholar 

  21. Yadav N, Dass R, Virmani J (2023) Deep learning-based CAD system design for thyroid tumor characterization using ultrasound images. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-17137-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Virmani J, Kumar V, Kalra N, Khandelwal N (2013) PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images. Def Sci J 63:478–486. https://doi.org/10.14429/dsj.63.3951

    Article  Google Scholar 

  23. Ardakani AA, Gharbali A, Mohammadi A (2015) Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images. Iran J Cancer Prev 8:116–124. https://doi.org/10.7863/ultra.14.09057

    Article  Google Scholar 

  24. Yadav N, Dass R, Virmani J (2022) Texture analysis of liver ultrasound images. Emergent Converging Technol Biomed Syst Lect Notes Electr Eng 841:575–585. https://doi.org/10.1007/978-981-16-8774-7_48

    Article  Google Scholar 

  25. Mailloux G, Bertrand M, Stampfler R, Ethier S (1986) Computer analysis of echographic textures in hashimoto disease of the thyroid. J Clin Ultrasound 14:521–527. https://doi.org/10.1002/jcu.1870140705

    Article  CAS  PubMed  Google Scholar 

  26. Prochazka A, Gulati S, Holinka S, Smutek D (2019) Classification of thyroid nodules in ultrasound images using direction independent features extracted by two-threshold binary decomposition. Technol Cancer Res Treat 18:1–8. https://doi.org/10.1177/1533033819830748

    Article  Google Scholar 

  27. Savelonas MA, Maroulis DE, Iakovidis DK, Dimitropoulos N (2008) Computer-aided malignancy risk assessment of nodules in thyroid US images utilizing boundary descriptors. In: Proc - 12th Pan-Hellenic Conf Informatics, PCI 2008. pp 157–160. https://doi.org/10.1109/PCI.2008.44

  28. Savelonas M, Maroulis D, Sangriotis M (2009) A computer-aided system for malignancy risk assessment of nodules in thyroid US images based on boundary features. Comput Methods Programs Biomed 6:25–32. https://doi.org/10.1016/j.cmpb.2009.04.001

    Article  Google Scholar 

  29. Ma J, Luo S, Dighe M et al (2010) Differential diagnosis of thyroid nodules with ultrasound elastography based on support vector machines. In: IEEE Int Ultrason Symp Proc. pp 1372–1375. https://doi.org/10.1109/ULTSYM.2010.0348

  30. Yu Q, Jiang T, Zhou A et al (2017) Computer-aided diagnosis of malignant or benign thyroid nodes based on ultrasound images. Eur Arch Oto-Rhino-Laryngol 274:2891–2897. https://doi.org/10.1007/s00405-017-4562-3

    Article  Google Scholar 

  31. Ding J, Cheng H, Ning C et al (2011) Quantitative measurement for thyroid cancer characterization based on elastography. J Ultrasound Med 30:1259–1266. https://doi.org/10.7863/jum.2011.30.9.1259

    Article  PubMed  Google Scholar 

  32. Bhatia KSS (2016) Feasibility study of texture analysis using ultrasound shear wave elastography to predict malignancy in thyroid nodules. Ultrasound Med Bio 42:1–10. https://doi.org/10.1016/j.ultrasmedbio.2016.01.013

    Article  Google Scholar 

  33. Chen S-J (2018) Classification of the thyroid nodules based on characteristic sonographic textural feature and correlated histopathology using hierarchical support vector machines. Ultrasound Med Biol 36:2018–2026. https://doi.org/10.1016/j.ultrasmedbio.2010.08.019

    Article  Google Scholar 

  34. Chang C, Chen S, Tsai M (2010) Application of the support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images. Pattern Recognit 43:3494–3506. https://doi.org/10.1016/j.patcog.2010.04.023

    Article  Google Scholar 

  35. Tsantis S (2005) Development of a support vector machine-based image analysis system for assessing the thyroid nodule malignancy risk on ultrasound. Ultrasound Med Biol 31:1451–1459. https://doi.org/10.1016/j.ultrasmedbio.2005.07.009

    Article  PubMed  Google Scholar 

  36. Dandan L, Yakui Z, Linyao D et al (2018) Texture analysis and classification of diffuse thyroid diseases based on ultrasound images. IEEE Int Instrum Meas Technol Conf 2018:1–6

    Google Scholar 

  37. Kim SY, Kim EK, Moon HJ et al (2015) Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray-scale ultrasound and elastography. Am J Roentgenol 205:W343–W351. https://doi.org/10.2214/AJR.14.13825

    Article  Google Scholar 

  38. Bi L, Shuang Z (2019) Diagnosis of thyroid nodules based on local non-quantitative multi-directional texture descriptor with rotation invariant characteristics for ultrasound image. J Med Syst 2019:1–10. https://doi.org/10.1007/s10916-019-1373-7

    Article  Google Scholar 

  39. Keramidas EG, Iakovidis D, Maroulis DE (2008) Thyroid texture representation via noise resistant image features thyroid texture representation via noise resistant image features. In: Proc IEEE Symp Comput Med Syst. pp 1–7. https://doi.org/10.1109/CBMS.2008.108

  40. Keramidas EG, Iakovidis DK, Maroulis D, Karkanis S (2007) Efficient and effective ultrasound image analysis scheme for thyroid nodule detection. ICIAR 2007 LNCS 4633:1052–1060

    Google Scholar 

  41. Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS (2011) Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures : a class of thyroscan TM algorithms. Technol Cancer Res Treat 10:371–380. https://doi.org/10.7785/tcrt.2012.500214

    Article  CAS  PubMed  Google Scholar 

  42. Iakovidis DK, Keramidas EG, Maroulis D (2008) Fuzzy local binary patterns for ultrasound texture characterization. ICIAR LNCS 5112:750–759

    Google Scholar 

  43. Iakovidis DK, Keramidas EG, Maroulis D (2010) Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artif Intell Med 50:33–41. https://doi.org/10.1016/j.artmed.2010.04.004

    Article  PubMed  Google Scholar 

  44. Bibicu D, Moraru L, Biswas A (2013) Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 26:119–128. https://doi.org/10.1007/s10278-012-9475-5

    Article  PubMed  Google Scholar 

  45. Chang C, Tsai M, Chen S (2008) Classification of the thyroid nodules using support vector machines. In: Int Jt Conf Neural Networks. pp 3093–3098

  46. Ardakani AA, Gharbali A, Mohammadi A (2015) Classification of benign and malignant thyroid nodules using wavelet texture analysis of sonograms. J Ultrasound Med 34:1983–1989. https://doi.org/10.7863/ultra.14.09057

    Article  PubMed  Google Scholar 

  47. Raghavendra U, Gudigar A, Maithri M et al (2018) Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images. Comput Biol Med 95:55–62. https://doi.org/10.1016/j.compbiomed.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Acharya UR, Faust O, Sree SV et al (2012) ThyroScreen system: High-resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 107:233–241. https://doi.org/10.1016/j.cmpb.2011.10.001

    Article  PubMed  Google Scholar 

  49. Nanda S, Sukumar M (2017) Detection and classification of thyroid nodule using Shearlet coefficients and support vector machine. Int J Eng Technol 6:50. https://doi.org/10.14419/ijet.v6i3.7705

    Article  Google Scholar 

  50. Kale SD, Punwatkar KM (2013) Texture analysis of ultrasound medical images for diagnosis of thyroid nodule using support vector machine. Int J Comput Sci Mob Comput 2:71–77

    Google Scholar 

  51. Ardakani AA, Rasekhi A, Mohammadi A, Motevalian E (2018) Differentiation between metastatic and tumor-free cervical lymph nodes in patients with papillary thyroid carcinoma by grey-scale sonographic texture analysis. J Radiol 83:37–46

    Google Scholar 

  52. Kale SD, Punwatkar KM (2013) Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network. Int J Comput Eng Manag 16:33–38

    Google Scholar 

  53. Catherine S, Maria L, Aristides A, Lambros V (2006) Quantitative image analysis in sonograms of the thyroid gland. Nucl Instrum Methods Phys Res 569:606–609. https://doi.org/10.1016/j.nima.2006.08.162

    Article  CAS  Google Scholar 

  54. Lyra ME, Skouroliakou K, Vasoura E, Antoniou A (2010) Texture Characterization in Ultasonograms of the Thyroid Gland. In: Proc 10th IEEE Int Conf Inf Technol Appl Biomed. pp 1–4. https://doi.org/10.1109/ITAB.2010.5687628

  55. Ding J, Huang J, Zhang Y (2011) A novel quantitative measurement for thyroid cancer detection based on elastography. In: 4th Int Congr Image Signal Process. pp 1801–1804

  56. Nam SJ, Yoo J, Lee HS et al (2016) Quantitative evaluation for differentiating malignant and benign thyroid nodules. J Ultrasound Med 35:775–782. https://doi.org/10.7863/ultra.15.05055

    Article  PubMed  Google Scholar 

  57. Smutek D (2003) Image texture analysis of sonograms in chronic inflammations of thyroid gland. Ultrasound Med Biol 29:1531–1543. https://doi.org/10.1016/S0301-5629(03)01049-4

    Article  PubMed  Google Scholar 

  58. Radim S, Smutek D, Sucharda P (2001) Systematic construction of texture features for hashimoto's lymphocytic thyroiditis recognition from sonographic images. In: Conf Artif Intell Med Eur. pp 339–348

  59. Mazziotti G, Sorvillo F, Iorio S et al (2003) Grey-scale analysis allows a quantitative evaluation of thyroid echogenicity in the patients with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 59:223–229

    Article  PubMed  Google Scholar 

  60. Omiotek Z, Burda A (2015) Application of selected classification methods for detection of Hashimoto’s thyroiditis on the basis of ultrasound images. Comput Intell Med Biol. https://doi.org/10.1007/978-3-319-16844-9

    Article  Google Scholar 

  61. Bastanfard M, Jalaeian B, Jafari S (2007) Analysis of sonogram images of thyroid gland based on wavelet transform. Int J Electr Comput Eng 1:673–676

    Google Scholar 

  62. Liu C, Xie L, Kong W et al (2019) Prediction of suspicious thyroid nodule using arti fi cial neural network based on radiofrequency ultrasound and conventional ultrasound: a preliminary study. Ultrasonics 99:105951. https://doi.org/10.1016/j.ultras.2019.105951

    Article  PubMed  Google Scholar 

  63. Aboudi N, Khlifa N (2020) Thyroid ultrasound images classification using the shearlet coefficients and the generic fourier descriptor. In: VISIGRAPP 2020 - Proc 15th Int Jt Conf Comput Vision, Imaging Comput Graph Theory Appl, vol. 4. pp 292–298. https://doi.org/10.5220/0008956902920298

  64. Luo S, Kim EH, Dighe M, Kim Y (2011) Thyroid nodule classification using ultrasound elastography via linear discriminant analysis. Ultrasonics 51:425–431. https://doi.org/10.1016/j.ultras.2010.11.008

    Article  PubMed  Google Scholar 

  65. Savelonas MA, Iakovidis DK, Dimitropoulos N, Maroulis D (2007) Computational characterization of thyroid tissue in the radon domain. In: Twent IEEE Int Symp Comput Med Syst 5–8

  66. Mailloux GE (1984) Texture analysis of ultrasound b-mode images by segmentation. Ultrason Imaging 6:262–277. https://doi.org/10.1177/016173468400600302

    Article  CAS  PubMed  Google Scholar 

  67. Selvathi D, Sharnitha VVSS (2011) Thyroid classification and segmentation in ultrasound images using machine learning algorithms. In: 2011 Int Conf Signal Process Commun Comput Netw Technol. pp 836–841. https://doi.org/10.1109/ICSCCN.2011.6024666

  68. Chang C, Liu H, Tseng C (2010) Computer-aided diagnosis for thyroid Graves’ disease in ultrasound images. Biomed Eng Appl Basis Commun 22:91–99. https://doi.org/10.4015/S1016237210001815

    Article  Google Scholar 

  69. Keramidas EG, Maroulis D, Iakovidis DK (2012) TND: A thyroid nodule detection system for analysis of ultrasound images and videos. J Med Syst 36:1271–1281. https://doi.org/10.1007/s10916-010-9588-7

    Article  PubMed  Google Scholar 

  70. Nugroho HA, Rahmawaty M, Triyani Y, Ardiyanto I (2016) Texture analysis for classification of thyroid ultrasound images. In: Int Electron Symp. pp 476–480. https://doi.org/10.1109/ELECSYM.2016.7861053

  71. Singh N, Jindal A (2012) Ultra sonogram images for thyroid segmentation and texture classification in diagnosis of malignant (cancerous) or benign (non-cancerous) nodules. Int J Eng Innov Technol 1:202–206

    Google Scholar 

  72. Vanithamani R, Dhivya R (2018) Thyroid nodule classification in medical ultrasound images. In: Int Conf Soft Comput Pattern Recognit. https://doi.org/10.1007/978-3-319-60618-7

  73. Nugroho HA, Zulfanahri, Nugroho A (2017) Feature extraction based on laws’ texture energy for lesion echogenicity classification of thyroid ultrasound images. In: Int Conf Comput Control Informatics its Appl Featur. pp 41–46. https://doi.org/10.1109/IC3INA.2017.8251737

  74. Chang C, Huang H, Chen S (2010) Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed Eng Appl Basis Commun 22:81–89. https://doi.org/10.4015/S1016237210001803

    Article  Google Scholar 

  75. Gireesha HM, Nanda S (2014) Thyroid nodule segmentation and classification in ultrasound images. Int J Eng Res Technol 3:2252–2256

    Google Scholar 

  76. Snekhalatha U, Gomathy V (2018) Ultrasound thyroid image segmentation, feature extraction, and classification of disease using feed forward back propagation network. Prog Adv Comput Intell Eng 563:89–98. https://doi.org/10.1007/978-981-10-6872-0_9

    Article  Google Scholar 

  77. Poudel P, Illanes A, Ataide EJG (2019) Thyroid ultrasound texture classification using autoregressive features in conjunction with machine learning approaches. IEEE Access 7:79354–79365. https://doi.org/10.1109/ACCESS.2019.2923547

    Article  Google Scholar 

  78. Chang Y, Paul AK, Kim N et al (2016) Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments. Med Phys 43:554–567. https://doi.org/10.1118/1.4939060

    Article  PubMed  Google Scholar 

  79. Vadhiraj VV, Simpkin A, O’connell J et al (2021) Ultrasound image classification of thyroid nodules using machine learning techniques. Med 57:1–18. https://doi.org/10.3390/medicina57060527

    Article  Google Scholar 

  80. Kesarkar XA, Kulhalli KV (2021) Thyroid Nodule Detection using Artificial Neural Network. In: Proc - Int Conf Artif Intell Smart Syst ICAIS 2021. pp 11–15. https://doi.org/10.1109/ICAIS50930.2021.9396035

  81. Zulfanahri, Nugroho HA, Nugroho A et al (2017) Classification of thyroid ultrasound images based on shape features analysis. In: 10th Biomed Eng Int Conf 2017-Janua:1–5. https://doi.org/10.1109/BMEiCON.2017.8229106

  82. Nugroho HA, Frannita EL (2017) Classification of Thyroid Nodules Based on Analysis of Margin Characteristic. In: Int Conf Comput Control Informatics its Appl. pp 47–51. https://doi.org/10.1109/IC3INA.2017.8251738

  83. Legakis I, Savelonas MA, Maroulis D, Iakovidis DK (2011) Computer-based nodule malignancy risk assessment in thyroid ultrasound images. Int J Comput Appl. https://doi.org/10.2316/Journal.202.2011.1.202-2955

    Article  Google Scholar 

  84. Singh N, Jindal A (2012) A segmentation method and comparison of classification methods for thyroid ultrasound images. Int J Comput Appl 50:43–49. https://doi.org/10.5120/7818-1115

    Article  Google Scholar 

  85. Priti S. Dhaygude, Handore SM (2016 ) Detection of thyroid nodule in ultrasound images using artificial neural network. Int J Adv Comput Eng Networking (IJACEN) 4(2):61–65

    Google Scholar 

  86. Dhaygude PS, Handore SM (2016) Feature extraction of thyroid nodule US images using GLCM. Int J Sci Res 5:2014–2017

    Google Scholar 

  87. Afshar P, Mohammadi A, Plataniotis KN et al (2018) From hand-crafted to deep learning-based cancer radiomics: challenges and opportunities. Comput Vis Pattern Recognition (Cornell Univ)

  88. Seabra JCR., Fred ALN (2009) A biometric identification system based on thyroid tissue echo-morphology. In: Proc Int Conf Bio-inspired Syst Signal Process. pp 186–193. https://doi.org/10.5220/0001556501860193

  89. Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G (2009) Computerized medical imaging and graphics morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph 33:91–99. https://doi.org/10.1016/j.compmedimag.2008.10.010

    Article  PubMed  Google Scholar 

  90. Acharya UR, Sree SV, Rama MM et al (2012) Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics 52:508–520. https://doi.org/10.1016/j.ultras.2011.11.003

    Article  PubMed  Google Scholar 

  91. Song G, Xue F, Zhang C (2015) A model using texture features to differentiate the nature of thyroid nodules on sonography. J Ultrasound Med 34:1753–1760. https://doi.org/10.7863/ultra.15.14.10045

    Article  PubMed  Google Scholar 

  92. Katsigiannis SEGK (2010) A contourlet transform feature extraction scheme for ultrasound thyroid texture classification. Eng Intell Syst 18(3):171

    Google Scholar 

  93. Acharya UR, Sree SV, Swapna G et al (2013) Effect of complex wavelet transform filter on thyroid tumor classification in three-dimensional ultrasound. Proc Inst Mech Eng Part H J Eng Med 227:284–292. https://doi.org/10.1177/0954411912472422

    Article  Google Scholar 

  94. Acharya UR, Chowriappa P, Fujita H, Bhat S (2016) Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2016.06.010

    Article  Google Scholar 

  95. Acharya UR, S VS, Molinari F et al (2012) Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound. In: 34th Annu Int Conf IEEE EMBS. pp 452–455

  96. Augustin S, Babu SS (2013) Thyroid classification as normal and abnormal using scg based feed forward back propagation neural network algorithm. In: Int J Comput Sci Mob Comput. pp 134–141

  97. Acharya UR, Sree SV, Mookiah MRK et al (2013) Diagnosis of Hashimoto’s thyroiditis in ultrasound using tissue characterization and pixel classification. J Eng Med 227:788–798. https://doi.org/10.1177/0954411913483637

    Article  CAS  Google Scholar 

  98. Nugroho A, Nugroho HA, Setiawan NA, Choridah L (2016) Internal content classification of ultrasound thyroid nodules based on textural features. Commun Sci Technol 1:61–69. https://doi.org/10.21924/cst.1.2.2016.25

    Article  Google Scholar 

  99. Koprowski R, Korzy A, Wróbel Z et al (2012) Influence of the measurement method of features in ultrasound images of the thyroid in the diagnosis of Hashimoto’s disease. Biomed Eng (NY) 11:1–21. https://doi.org/10.1186/1475-925X-11-91

    Article  Google Scholar 

  100. Algorithmus E, Klassifikator-parametereinstellung D (2012) Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. Ultraschall Med 35:237–245

    Article  Google Scholar 

  101. Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G (2006) A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Comput Methods Programs Biomed 4:86–98. https://doi.org/10.1016/j.cmpb.2006.09.006

    Article  Google Scholar 

  102. Chen J, You H (2016) Efficient classification of benign and malignant thyroid tumors based on characteristics of medical ultrasonic images. In: 2016 IEEE Adv Inf Manag Commun Electron Autom Control Conf. pp 950–954

  103. Tsantis S, Glotsos D, Spyridonos P, Al E (2004) Improving diagnostic accuracy in the classification of thyroid cancer by combining quantitative information extracted from both ultrasound and cytological images. In: 1st Int Conf “From Sci Comput to Comput Eng”. pp 8–10

  104. Prochazka AA, Gulati S, Holinka S, Smutek D (2019) Patch-based classification of thyroid nodules in ultrasound images using direction independent features extracted by two-threshold binary decomposition. Comput Med Imaging Graph 71:9–18. https://doi.org/10.1016/j.compmedimag.2018.10.001

    Article  PubMed  Google Scholar 

  105. Khairalseed M, Laimes R (2021) Classification of thyroid nodules in H-scan ultrasound images using texture and principal component analysis. In: IEEE UFFC Latin America Ultrasonics Symposium (LAUS), pp 1–4

  106. Rajshree Srivastava PK (2022) A CNN-SVM hybrid model for the classification of thyroid nodules in medical ultrasound images. Int J Grid Util Comput 13(6):624–639

    Article  Google Scholar 

  107. Khairalseed M, Laimes R (2022) H-scan ultrasound imaging for the classification of thyroid tumors. In: IEEE International Ultrasonics Symposium (IUS), pp 1–3

  108. Keutgen XM, Li H, Memeh K, Busch JC, Williams J, Lan Li, Sarne D, Finnerty B, Angelos P, Fahey TJ, Giger ML (2022) A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features. J Med Imaging 9(3):034501. https://doi.org/10.1117/1.JMI.9.3.034501

    Article  Google Scholar 

  109. Poornima D, Karegowda A (2022) Enhanced thyroid nodule classification adopting significant features selection. In: Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), pp 1–5

  110. Zhang F, Sun Y (2022) Analysis of the application value of ultrasound imaging diagnosis in the clinical staging of thyroid cancer. J Oncol 2022:1–10

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Dr. Jyotsna Sen, Sr. Professor, department of radiodiagnosis, Pt. B. D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, for stimulating discussions regarding different sonographic characteristics exhibited by various types of benign and malignant thyroid tumors. The first author acknowledge “National Project Implementation Unit (NPIU), a unit of Ministry of Human Resource Development, Government of India” for the financial assistantship through TEQIP-III project at Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India.

Funding

The authors have not disclosed any funding. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Dass, R. & Virmani, J. A systematic review of machine learning based thyroid tumor characterisation using ultrasonographic images. J Ultrasound (2024). https://doi.org/10.1007/s40477-023-00850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40477-023-00850-z

Keywords

Navigation