Skip to main content
Log in

Aliphatic Lactones of Natural Origin: Their Toxicological and Behavioral Effects as a Possible Control Strategy for Medical Importance Mosquitoes

  • REVIEW
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lactones are cyclic esters found in many of different fruits and in other natural products for human consumption. When lactones are used at concentrations considered safe for humans, they do not represent a risk to the environment. In nature, lactones constitute a class of compounds that exhibit a range of diversity in their chemical structure through ring size and substituents, as well as stereochemistry. The purpose of this review was to gather the information available to date on the biological effects of naturally occurring γ and δ lactones on mosquitoes of sanitary importance in order to improve their control.

Recent Findings

Recent studies demonstrated the repellent effect of γ-octalactone on adult female Culex pipiens quinquefasciatus. Repellent effects of other four aliphatic lactones were also found in larvae of the same species and Aedes aegypti. In addition, some aliphatic lactones were found to have a larvicidal effect in both species.

Summary

Gamma and delta lactones of natural origin have shown repellency against larvae and adults of medical importance mosquitoes and some can even cause a larvicidal effect. This makes them compounds capable of being used as part of integrated management strategies used against these mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data will be available upon request to the authors.

The tables and figures are original.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aguirre-Obando OA, Duarte-Gandica I, Álvarez-Londoño JC, Jiménez-Montoya JA. Actividad larvicida de extractos vegetales de la familia Asteraceae y modelación matemática para su uso en el control de poblaciones de Aedesaegypti. Actualidades Biológicas. 2018;40(108):5–16.

    Article  Google Scholar 

  2. Gleiser RM, Zygadlo JA. Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2007;101(5):1349–54.

    Article  PubMed  Google Scholar 

  3. Pilger D, De Maesschalckm M, Horstick O, San Martin JL. Dengue outbreak response: documented effective interventions and evidence gaps. TropIKAnet. 2010;1:1.

    Google Scholar 

  4. World Health Organization. Space spray application of insecticides for vector and public health pest control: a practitioner’s guide (No. WHO/CDS/WHOPES/GCDPP/2003.5). World Health Organization. 2003;1-43. Available from: https://iris.who.int/bitstream/handle/10665/68057/WHO_CDS?sequence=1.

  5. Floore TG. Mosquito larval control practices: past and present. J Am Mosq Control Assoc. 2006;22(3):527–33.

    Article  CAS  PubMed  Google Scholar 

  6. Seccacini E, Lucia A, Zerba E, Licastro S, Masuh H. Aedes aegypti resistance to temephos in Argentina. J Am Mosq Control Assoc. 2008;24(4):608–9.

    Article  PubMed  Google Scholar 

  7. Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS one. 2018;13(6):e0199615.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bernal Jiménez LC. Entomopathogenic activity of Lysinibacillus sphaericus in field realistic dosages of glyphosate in Aedes aegypti and Culex quinquefasciatus larvae resistant to temephos. Universidad de los Andes. 2019:1–12. [online] Available from: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/ec02210a-b3d1-4519-a53e-3ef97e15d974/content.

  9. Leyva M, French L, Pino O, Montada D, Morejón G, Marquetti MDC. Plantas con actividad insecticida: una alternativa natural contra mosquitos. Rev Bioméd. 2017;28(3):139–81.

    Google Scholar 

  10. Silvério MRS, Espindola LS, Lopes NP, Vieira PC. Plant natural products for the control of Aedes aegypti: the main vector of important arboviruses. Molecules. 2020;25(15):3484.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sartori SK, Diaz MAN, Diaz-Munoz G. Lactones: classification, synthesis, biological activities, and industrial applications. Tetrahedron. 2021;84:132001.

    Article  CAS  Google Scholar 

  12. Dufosse L, Latrasse A, Spinnler HE. Importance of lactones in food flavours: structure, distribution, sensory properties and biosynthesis. Sci Aliment (France). 1994;14:17–50.

  13. Nogueira JP, da Silva Souza IH, Andrade JKS, Narain N. Status of research on lactones used as aroma: a bibliometric review. Food Biosci. 2022;50:102004.

  14. Simmons D. Evaluation of vaporization enthalpies and vapor pressures of various aroma and pharmacologically active compounds by correlation gas chromatography. Thesis Submitted to the Graduate School at the University of Missouri- St. Louis in partial fulfillment of the requirements for the degree Master of Science in Chemistry. 2018; 1-120. Theses. [online] Available from: https://irl.umsl.edu/thesis/335.

  15. Forss DA. Odor and flavor compounds from lipids. Prog Chem Fats Other Lipids. 1973;13:177–258.

    Article  CAS  Google Scholar 

  16. Bernreuther A, Bank J, Krammer G, Schreier P. Multidimensional gas chromatography/mass spectrometry: a powerful tool for the direct chiral evaluation of aroma compounds in plant tissues I. 5-alkanolides in fruits. Phytochem Anal. 1991;2(1):43–7.

    Article  Google Scholar 

  17. Barros MES, Freitas JC, Santos GK, da Silva RCS, Pontual EV, Paiva PM, et al. Effects of α, β-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti. Exp Parasitol. 2015;156:37–41.

    Article  CAS  PubMed  Google Scholar 

  18. Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2 H-furo [2, 3-c] pyran-2-one under laboratory and field conditions. Plant Soil. 2007;298:113–24.

    Article  CAS  Google Scholar 

  19. de Fátima Â, Kohn LK, de Carvalho JE, Pilli RA. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. Bioorg Med Chem. 2006;14(3):622–31.

    Article  PubMed  Google Scholar 

  20. Silva LDC, Tauhata SBF, Baeza LC, de Oliveira CMA, Kato L, Borges CL, et al. Argentilactone molecular targets in Paracoccidioides brasiliensis identified by chemoproteomics. Antimicrob Agents Chemother. 2018;62(11):10–1128.

    Article  Google Scholar 

  21. • Toloza AC, Zygadlo J, Mougabure-Cueto G, Zerba E, Faillaci S, Picollo MI. The fumigant and repellent activity of aliphatic lactones against Pediculus humanus capitis (Anoplura: Pediculidae). Mem Inst Oswaldo Cruz. 2006;101:55–6. Toloza et al. evaluated the repellency activity of three aliphatic lactones, including γ-nonalactone and δ-dodecalactone, against permethrin-resistant Pediculus humanus capitis from Argentina. In the repellency test, the three lactones were as effective as the repellent piperonal.

    Article  CAS  PubMed  Google Scholar 

  22. Mwangi MT, Gikonyo NK, Ndiege IO. Repellent properties of δ-octalactone against the tsetse fly, Glossina morsitans morsitans. J Insect Sci. 2008;8(1):43.

    PubMed  PubMed Central  Google Scholar 

  23. Wachira BM, Mireji PO, Okoth S, William JM, Murilla GA, Hassanali A. Responses of Glossina pallidipes and Glossina morsitans morsitans tsetse flies to analogues of δ-octalactone and selected blends. Acta Trop. 2016;160:53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cáceres, M. Estudio integral de la resistencia a insecticidas y alternativas para el control de la chinche de cama Cimex lectularius L. (Heteroptera: Cimicidae) en Argentina. 2020; 1:209. PhD Theses. Universidad de San Martin: Ciencia y Tecnología, Mención Química.

  25. Gonzalez PV, Alvarez Costa A, Harburguer LV, Masuh HM. Quantitative evaluation of the behavioral response to attractant and repellent compounds in Anopheles pseudopunctipennis and Aedes aegypti (Diptera: Culicidae) larvae. J Econ Entomol. 2019;112(3):1388–95.

    Article  CAS  PubMed  Google Scholar 

  26. Pask GM, Romaine IM, Zwiebel LJ. The molecular receptive range of a lactone receptor in Anopheles gambiae. Chem Senses. 2013;38(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  27. Menger DJ, van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28(4):407–13.

    Article  CAS  PubMed  Google Scholar 

  28. Takken W, Van Loon JJA, Zwiebel LJ, Pask GM, Mukabana WR. “Insect repellent compositions and methods of use”. U.S. Patent No. 15/033,884. 2013.

  29. •• Bedoukian RH. “Control and repellency of mosquitoes”. U.S. Patent No. 9,314,029. 2016. Bedoukian enunciated that saturated δ- and γ-lactones or α, β-unsaturated with side chains of variable length and/or complexity might be able of functioning as repellent agents and for mosquito control. His bioassays confirmed the repellent capacity and protection against bites of certain lactones using adult Ae. aegypti and Cx. pipiens quinquefasciatus mosquitoes.

  30. Rodriguez M. Evaluación de la actividad repelente de sustancias de origen natural como estrategia de protección y control del Aedes aegypti (Diptera: culicidae). Bachellor Theses. Universidad de Belgrano, Ciencias Biológicas; 2020. p. 1–57.

  31. Xu P, Choo YM, An S, Leal GM, Leal WS. Mosquito odorant receptor sensitive to natural spatial repellents and inhibitory compounds. Insect Biochem Mol Biol. 2022;144:103763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatfield IL. Biotechnological production of flavour-active lactones. Biotechnol Aroma Compd. 1997;55:221–38.

  33. Maga JA, Katz I. Lactones in foods. Crit Rev Food Sci Nutr. 1976;8(1):1–56.

    Article  CAS  Google Scholar 

  34. Zia H, Von Ah U, Meng YH, Schmidt R, Kerler J, Fuchsmann P. Biotechnological formation of dairy flavor inducing δ-lactones from vegetable oil. Food Chem: X. 2022;13:100220.

    CAS  PubMed  Google Scholar 

  35. Marella ER, Dahlin J, Dam MI, Ter Horst J, Christensen HB, Sudarsan S, et al. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. Metab Eng. 2020;61:427–36.

    Article  CAS  PubMed  Google Scholar 

  36. Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr. 2022;62:1–32.

  37. Clements AN. The Biology of Mosquitoes Volume 2: Sensory Reception and Behaviour. Wallingford, UK: CABI Publishing; 1999.

  38. Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc Natl Acad Sci. 2008;105(17):6433–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Gonzalez PV, González Audino PA, Masuh HM. Behavioral response of Aedes aegypti (Diptera: Culicidae) larvae to synthetic and natural attractants and repellents. J Med Entomol. 2015;52(6):1315–21. González et al. adapted and used a behavioral assay to identify a variety of odor-specific responses of Ae. aegypti larvae that depend on the integrity of the larval antennae. Such an assay makes it possible to study chemosensory-driven behaviors in larvae of this and other mosquito species.

    Article  CAS  PubMed  Google Scholar 

  40. Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF. Smell and taste perception in Drosophila melanogasterLarva: toxin expression studies in chemosensory neurons. JNeurosci. 1999;19(15):6599–609.

    Article  CAS  Google Scholar 

  41. Goh SH, Ee GCL, Chuah CH, Wei C. Styrylpyrone derivatives from Goniothalamus dolichocarpus. Aust J Chem. 1995;48(2):199–205.

    Article  CAS  Google Scholar 

  42. Ratnayake R, Karunaratne V, Ratnayake Bandara BM, Kumar V, MacLeod JK, Simmonds P. Two new lactones with mosquito larvicidal activity from three Hortonia species. J Nat Prod. 2001;64(3):376–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ratnayake R, Gunasekera S, Williams D, Andersen R, Karunaratne V. Novel epoxy butenolides from the genus Hortonia. Ceylon J Sci. 2019;48(1):97–100.

    Article  Google Scholar 

  44. Seo SM, Lee JW, Shin J, Tak JH, Hyun J, Park IK. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci Rep. 2021;11(1):12038.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bisset JA, Rodríguez M, De Armas Y. Comparación de 2 poblaciones de mosquitos Aedes aegypti de Santiago de Cuba con diferente conducta de reposo. Rev Cubana Med Trop. 2005;57(2):143–50.

    PubMed  Google Scholar 

  46. Litchfield JJ, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949;96(2):99–113.

    CAS  PubMed  Google Scholar 

  47. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol. 2003;89(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  48. Al-Sarar AS, Al-Shahrani D, Bayoumi AE, Abobakr Y, Hussein HI. Laboratory and feld evaluation of some chemical and biological larvicides against Culex spp. (Diptera: Culicidae) immature stages. Int J Agric Biol. 2011;13(1):115–9.

  49. Food and Drug Administration (FDA). Cfr - code of federal regulations, 21 CFR 172.515. Title 21, Volume 3. 2021. [online] Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.515. Accessed 26 Jul 2023.

  50. National Center for Biotechnology Information. PubChem Compound Summary for CID 12844, delta-Dodecalactone. [online] Available from: https://pubchem.ncbi.nlm.nih.gov/compound/delta-Dodecalactone. Accessed 6 Oct 2023.

  51. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on Flavouring Group Evaluation 10, Revision 2 (FGE. 10Rev2): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing an additional oxygenated functional group and lactones from chemical groups 9, 13 and 30. EFSA J. 2011;9(7):2164.

    Article  Google Scholar 

  52. Gonzalez PV, Harburguer L, González-Audino PA, Masuh HM. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides. Parasitol Res. 2016;115:2185–90.

    Article  PubMed  Google Scholar 

  53. Thomas MB, Godfray HC, Read AF, Van Den Berg H, Tabashnik BE, van Lenteren JC, Wage JK, Takken W. Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med. 2012;9:e100126.

    Article  Google Scholar 

  54. Menger DJ, Otieno B, De Rijk M, Mukabana WR, Van Loon JJ, Takken W. A push–pull system to reduce house entry of malaria mosquitoes. Malar J. 2014;13:11.

    Article  Google Scholar 

  55. Xia Y. Molecular and cellular studies of mosquito odorant receptors and olfactory-driven larval behavior, Ph.D thesis. Nashville, TN: Vanderbilt University; 2008. p. 1–122.

  56. Api AM, Belmonte F, Belsito D, Biserta S, Botelho D, Bruze M, et al. RIFM fragrance ingredient safety assessment, -nonalactone, CAS Registry Number 104-61-0. Food Chem Toxicol. 2019;134:110905.

  57. Api AM, Belsito D, Botelho D, Bruze M, Burton GA Jr, Buschmann J, et al. RIFM fragrance ingredient safety assessment, hydroxynonanoic acid, δ-lactone, CAS Registry Number 3301–94-8. Food Chem Toxicol. 2021;153:112369.

    Article  CAS  PubMed  Google Scholar 

  58. Api AM, Belmonte F, Belsito D, Biserta S, Botelho D, Bruze M, et al. RIFM fragrance ingredient safety assessment, γ-dodecalactone, CAS Registry Number 2305–05-7. Food Chem Toxicol. 2019;134:110895.

    Article  CAS  PubMed  Google Scholar 

  59. Api AM, Belsito D, Botelho D, Bruze M, Burton GA Jr, Buschmann J, et al. RIFM fragrance ingredient safety assessment, δ-dodecalactone, CAS Registry Number 713–95-1. Food Chem Toxicol. 2021;153:112295.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support by the ANPCyT of Argentina (PICT 2017–1788).

Author information

Authors and Affiliations

Authors

Contributions

L.V.H and P.V.G carried out the experimental design. J.V.M, L.V.H and P.V.G carried out the experiments, the analysis of the results, wrote and revised the manuscript. J.V.M prepare Figs. 1 and 2.

Corresponding author

Correspondence to Laura V. Harburguer.

Ethics declarations

Ethical Approval

No human participants, human data, or human tissue were used in the present study. Insects were fed on pigeon blood once a week according to a protocol approved by the Institutional Animal Care and Use Committee of CIPEIN (IACUC/ CICUAL 1531/13).

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, J.V., Harburguer, L.V. & Gonzalez, P.V. Aliphatic Lactones of Natural Origin: Their Toxicological and Behavioral Effects as a Possible Control Strategy for Medical Importance Mosquitoes. Curr Trop Med Rep 11, 11–18 (2024). https://doi.org/10.1007/s40475-023-00311-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-023-00311-x

Keywords

Navigation