Skip to main content
Log in

The Iron Triangle of Familiarity for Severe Mental Illness, Developmental Coordination Disorder and Risk of Psychosis: Recognize to Prevent

  • Hot Topic
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite increasing evidence on the association between childhood motor problems and the subsequent risk of psychosis, at least in offspring of patients with severe mental illness, this possible heterotypic outcome of children with Developmental Coordination Disorder (DCD) remains undervalued and poorly acknowledged. This review therefore aims to examine this possible longitudinal association and its possible neurophysiological bases.

Recent Findings

Offspring of individuals with schizophrenia who exhibit motor dyscoordination are more likely to subsequently develop psychosis, according to prospective studies. A recent longitudinal study strongly confirmed that especially the genetic risk for schizophrenia is associated with childhood motor problems, up to a possible DCD diagnosis in a third of cases, and that in early adolescence, there is an intimate bidirectional association between motor impairment and psychotic experiences. Neurophysiological studies suggest that the common alteration of corollary discharge may have a direct effect on motor coordination and an indirect effect to the risk of psychosis through the intermediate progressive fading of the feeling of agency.

Summary

Genetic risk for schizophrenia or severe mental illness in infancy + motor impairment up to a diagnosis of DCD in childhood + risk for psychotic manifestations in adolescence constitute an iron triangle of distinct developmental manifestations in distinct developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as:  •• Of major importance

  1. Obsuth I, Murray AL, Di Folco S, Ribeaud D, Eisner M. Patterns of homotypic and heterotypic continuity between ADHD symptoms, externalising and internalising problems from age 7 to 15. J Abnorm Child Psychol. 2020;48:223–36. https://doi.org/10.1007/s10802-019-00592-9.

    Article  PubMed  Google Scholar 

  2. Petersen IT, Choe D, Lebeau B. Studying a moving target in development: the challenge and opportunity of heterotypic continuity. Develop Rev. 2020;58:100935. https://doi.org/10.1016/j.dr.2020.100935.

    Article  Google Scholar 

  3. Speranza AM, Liotti M, Spoletini I, Fortunato A. Heterotypic and homotypic continuity in psychopathology: a narrative review. Front Psychol. 2023;14:1194249. https://doi.org/10.3389/fpsyg.2023.1194249.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cicchetti D, Rogosch FA. Equifinality and multifinality in developmental psychopathology. Develop Psychopathol. 1996;8:597–600. https://doi.org/10.1017/S0954579400007318.

    Article  Google Scholar 

  5. Shaw P, Gogtay N, Rapoport J. Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Hum Brain Mapp. 2010;31:917–25. https://doi.org/10.1002/hbm.21028.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Insel TR. Mental disorders in childhood: shifting the focus from behavioral symptoms to neurodevelopmental trajectories. JAMA. 2014;311:1727–8. https://doi.org/10.1001/jama.2014.1193.

    Article  CAS  PubMed  Google Scholar 

  7. Louveau C, Ellul P, Iftimovici A, Dubreucq J, Laidi C, Leyrolle Q, Purper-Ouakil D, Jacquemont S, Lyonnet S, Barthélémy C, Krebs MO, Bai J, Olivier P, Chaumette B. Neurodevelopmental disorders (NDD) without boundaries: research and interventions beyond classifications. J Neural Transm (Vienna). 2023;130:473–9. https://doi.org/10.1007/s00702-023-02586-w.

    Article  PubMed  Google Scholar 

  8. Parellada M, Gomez-Vallejo S, Burdeus M, Arango C. Developmental differences between schizophrenia and bipolar disorder. Schizophr Bull. 2017;43:1176–89. https://doi.org/10.1093/schbul/sbx126.PMID.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hameed MA, Lewis AJ. Offspring of parents with schizophrenia: a systematic review of developmental features across childhood. Harv Rev Psychiatry. 2016;24:104–17. https://doi.org/10.1097/HRP.0000000000000076.

    Article  PubMed  Google Scholar 

  10. Poletti M, Raballo A. Developmental psychotic risk: toward a neurodevelopmentally informed staging of vulnerability to psychosis. Harv Rev Psychiatry. 2020;28:271–8. https://doi.org/10.1097/HRP.0000000000000266.

    Article  PubMed  Google Scholar 

  11. Poletti M, Raballo A. (Developmental) motor signs: reconceptualizing a potential transdiagnostic marker of psychopathological vulnerability. Schizophr Bull. 2022;48:763–5. https://doi.org/10.1093/schbul/sbac026.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blank R, Barnett AL, Cairney J, Green D, Kirby A, Polatajko H, et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev Med Child Neurol. 2019;61:242–85. https://doi.org/10.1111/dmcn.14132.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harrowell I, Hollén L, Lingam R, Emond A. Mental health outcomes of developmental coordination disorder in late adolescence. Dev Med Child Neurol. 2017;59:973–9. https://doi.org/10.1111/dmcn.13469.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Omer S, Jijon AM, Leonard HC. Research Review: internalising symptoms in developmental coordination disorder: a systematic review and meta-analysis. J Child Psychol Psychiatry. 2019;60:606–21. https://doi.org/10.1111/jcpp.13001.

    Article  PubMed  Google Scholar 

  15. Mancini VO, Rigoli D, Cairney J, Roberts LD, Piek JP. The elaborated environmental stress hypothesis as a framework for understanding the association between motor skills and internalizing problems: a mini-review. Front Psychol. 2016;7:239. https://doi.org/10.3389/fpsyg.2016.00239.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rosso IM, Bearden CE, Hollister JM, Gasperoni TL, Sanchez LE, Hadley T, Cannon TD. Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophr Bull. 2000;26:367–78. https://doi.org/10.1093/oxfordjournals.schbul.a033459.

    Article  CAS  PubMed  Google Scholar 

  17. Schiffman J, Sorensen HJ, Maeda J, Mortensen EL, Victoroff J, Hayashi K, et al. Childhood motor coordination and adult schizophrenia spectrum disorders. Am J Psychiatry. 2009;1669:1041–7. https://doi.org/10.1176/appi.ajp.2009.08091400.

    Article  Google Scholar 

  18. Buka SL, Seidman LJ, Tsuang MT, Goldstein JM. The New England Family Study High-risk Project: neurological impairments among offspring of parents with schizophrenia and other psychoses. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:653–60. https://doi.org/10.1002/ajmg.b.32181.

    Article  PubMed  Google Scholar 

  19. Schiffman J, Mittal V, Kline E, Mortensen EL, Michelsen N, Ekstrøm M, et al. Childhood dyspraxia predicts adult-onset nonaffective-psychosis-spectrum disorder. Dev Psychopathol. 2015;27:1323–30. https://doi.org/10.1017/S0954579414001436.

    Article  PubMed  Google Scholar 

  20. Burton BK, Hjorthøj C, Jepsen JR, Thorup A, Nordentoft M, Plessen KJ. Research review: do motor deficits during development represent an endophenotype for schizophrenia? A meta-analysis J Child Psychol Psychiatry. 2016;57:446–56. https://doi.org/10.1111/jcpp.12479.

    Article  PubMed  Google Scholar 

  21. Serdarevic F, Jansen PR, Ghassabian A, White T, Jaddoe VWV, Posthuma D, Tiemeier H. Association of genetic risk for schizophrenia and bipolar disorder with infant neuromotor development. JAMA Psychiat. 2018;75:96–8. https://doi.org/10.1001/jamapsychiatry.2017.3459.

    Article  Google Scholar 

  22. Cannon M, Jones PB, Murray RM. Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry. 2002;159:1080–92. https://doi.org/10.1176/appi.ajp.159.7.1080.

    Article  PubMed  Google Scholar 

  23. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;1673:261–80. https://doi.org/10.1176/appi.ajp.2009.09030361.

    Article  Google Scholar 

  24. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013;43:239–57. https://doi.org/10.1017/S0033291712000736.

    Article  CAS  PubMed  Google Scholar 

  25. Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: implications for neurodevelopmental theories of psychosis. Schizophr Res. 2022;247:41–54. https://doi.org/10.1016/j.schres.2021.04.007.

    Article  PubMed  Google Scholar 

  26. Cheslack-Postava K, Brown AS. Prenatal infection and schizophrenia: a decade of further progress. Schizophr Res. 2022;247:7–15. https://doi.org/10.1016/j.schres.2021.05.014.

    Article  PubMed  Google Scholar 

  27. Sacker A, Done DJ, Crow TJ. Obstetric complications in children born to parents with schizophrenia: a meta-analysis of case-control studies. Psychol Med. 1996;26:279–87. https://doi.org/10.1017/s003329170003467x.

    Article  CAS  PubMed  Google Scholar 

  28. Edwards J, Berube M, Erlandson K, Haug S, Johnstone H, Meagher M, Sarkodee-Adoo S, Zwicker JG. Developmental coordination disorder in school-aged children born very preterm and/or at very low birth weight: a systematic review. J Dev Behav Pediatr. 2011;32:678–87. https://doi.org/10.1097/DBP.0b013e31822a396a.

    Article  PubMed  Google Scholar 

  29. Spittle AJ, Dewey D, Nguyen TN, Ellis R, Burnett A, Kwong A, et al. Rates of Developmental Coordination Disorder in children born very preterm. J Pediatr. 2021;231:61-7.e2. https://doi.org/10.1016/j.jpeds.2020.12.022.

    Article  PubMed  Google Scholar 

  30. Burton BK, Thorup AAE, Jepsen JR, Poulsen G, Ellersgaard D, Spang KS, Christiani CJ, Hemager N, Gantriis D, Greve A, Mors O, Nordentoft M, Plessen KJ. Impairments of motor function among children with a familial risk of schizophrenia or bipolar disorder at 7 years old in Denmark: an observational cohort study. Lancet Psychiatry. 2017;4:400–8. https://doi.org/10.1016/S2215-0366(17)30103-7.

    Article  PubMed  Google Scholar 

  31. Henderson SE, Sugden DA, Barnett AL. Movement Assessment Battery for Children-2 second edition (Movement ABC-2). London, UK: The Psychological Corporation; 2007.

    Google Scholar 

  32. Burton BK, Krantz MF, Skovgaard LT, Brandt JM, Gregersen M, Søndergaard A, et al. Impaired motor development in children with familial high risk of schizophrenia or bipolar disorder and the association with psychotic experiences: a 4-year Danish observational follow-up study. Lancet Psychiatry. (2023) Jan 4:S2215–0366(22)00402–3. https://doi.org/10.1016/S2215-0366(22)00402-3. This paper documented the interplay along development between motor impairment, up to DCD, and the risk of psychosis.

  33. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8. https://doi.org/10.1097/00004583-199707000-00021.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002;25:409–32. https://doi.org/10.1146/annurev.neuro.25.112701.142754.

    Article  CAS  PubMed  Google Scholar 

  35. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35:528–48. https://doi.org/10.1093/schbul/sbn187.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jablensky A, McNeil TF, Morgan VA. Barbara fish and a short history of the neurodevelopmental hypothesis of schizophrenia. Schizophr Bull. 2017;43:1158–63. https://doi.org/10.1093/schbul/sbx094.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murray RM, Bhavsar V, Tripoli G, Howes O. 30 Years on: how the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr Bull. 2017;43(6):1190–6. https://doi.org/10.1093/schbul/sbx121.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seidman LJ, Mirsky AF. Evolving notions of schizophrenia as a developmental neurocognitive disorder. J Int Neuropsychol Soc. 2017;23:881–92. https://doi.org/10.1017/S1355617717001114.

    Article  PubMed  Google Scholar 

  39. Driver DI, Thomas S, Gogtay N, Rapoport JL. Childhood-onset schizophrenia and early-onset schizophrenia spectrum disorders: an update. Child Adolesc Psychiatr Clin N Am. 2020;29(1):71–90. https://doi.org/10.1016/j.chc.2019.08.017.

    Article  PubMed  Google Scholar 

  40. Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–93. https://doi.org/10.1038/nature09552.

    Article  CAS  PubMed  Google Scholar 

  41. Poletti M, Raballo A. The salience of the motor domain in the risk of psychosis. Lancet Psychiatry. 2023;10:314. https://doi.org/10.1016/S2215-0366(23)00074-3.

    Article  PubMed  Google Scholar 

  42. Sober SJ, Sabes PN. Multisensory integration during motor planning. J Neurosci. 2003;23:6982–92. https://doi.org/10.1523/JNEUROSCI.23-18-06982.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crapse TB, Sommer MA. Corollary discharge across the animal kingdom. Nat Rev Neurosci. 2008;9:587–600. https://doi.org/10.1038/nrn2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Straka H, Simmers J, Chagnaud BP. A new perspective on predictive motor signaling. Curr Biol. 2018;28:R232–43. https://doi.org/10.1016/j.cub.2018.01.033.

    Article  CAS  PubMed  Google Scholar 

  45. Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—A systematic review. Neurosci Biobehav Rev. 2014;47:225–44. https://doi.org/10.1016/j.neubiorev.2014.08.011.

    Article  PubMed  Google Scholar 

  46. Gomez A, Sirigu A. Developmental coordination disorder: core sensori-motor deficits, neurobiology and etiology. Neuropsychologia. 2015;79:272–87. https://doi.org/10.1016/j.neuropsychologia.2015.09.032.

    Article  PubMed  Google Scholar 

  47. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull. 1978;4:636–40. https://doi.org/10.1093/schbul/4.4.636.

    Article  CAS  PubMed  Google Scholar 

  48. Scott M. Corollary discharge provides the sensory content of inner speech. Psychol Sci. 2013;24:1824–30. https://doi.org/10.1177/0956797613478614.

    Article  PubMed  Google Scholar 

  49. Bansal S, Ford JM, Spering M. The function and failure of sensory predictions. Ann N Y Acad Sci. 2018;1426:199–220. https://doi.org/10.1111/nyas.13686.

    Article  Google Scholar 

  50. Heinks-Maldonado TH, Mathalon DH, Houde JF, Gray M, Faustman WO, Ford JM. Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch Gen Psychiatry. 2007;64:286–96. https://doi.org/10.1001/archpsyc.64.3.286.

    Article  PubMed  Google Scholar 

  51. Thakkar KN, Rolfs M. Disrupted corollary discharge in schizophrenia: evidence from the oculomotor system. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(9):773–81. https://doi.org/10.1016/j.bpsc.2019.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gamma F, Goldstein JM, Seidman LJ, Fitzmaurice GM, Tsuang MT, Buka SL. Early intermodal integration in offspring of parents with psychosis. Schizophr Bull. 2014;40:992–1000.

    Article  PubMed  Google Scholar 

  53. Haggard P. Sense of agency in the human brain. Nat Rev Neurosci. 2017;18:196–207. https://doi.org/10.1038/nrn.2017.14.

    Article  CAS  PubMed  Google Scholar 

  54. Buhrmann T, Di Paolo E. The sense of agency – a phenomenological consequence of enacting sensorimotor schemes. Phenom Cogn Sci. 2017;16:207–36. https://doi.org/10.1007/s11097-015-9446-7.

    Article  Google Scholar 

  55. Moore JW, Obhi SS. Intentional binding and the sense of agency: a review. Conscious Cogn. 2012;21(1):546–61. https://doi.org/10.1016/j.concog.2011.12.002.

    Article  PubMed  Google Scholar 

  56. Raballo A, Poletti M, Preti A, Parnas J. The self in the spectrum: a meta-analysis of the evidence linking basic self-disorders and schizophrenia. Schizophr Bull. 2021;47:1007–17. https://doi.org/10.1093/schbul/sbaa201. This meta-analysis showed the specific aggregation of Self-disorders in the schizophrenia spectrum.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sass LA, Parnas J. Schizophrenia, consciousness, and the self. Schizophr Bull. 2003;29:427–44. https://doi.org/10.1093/oxfordjournals.schbul.a007017.

    Article  PubMed  Google Scholar 

  58. Parnas J, Henriksen MG. Disordered self in the schizophrenia spectrum: a clinical and research perspective. Harv Rev Psychiatry. 2014;22:251–65. https://doi.org/10.1097/HRP.0000000000000040.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parnas J, Bovet P, Innocenti GM. Schizophrenic trait features, binding and corticocortical connectivity: a neurodevelopmental pathogenetic hypothesis. Neurol Psychiatry Brain Res. 1996;4(185):96.

    Google Scholar 

  60. Borda JP, Sass LA. Phenomenology and neurobiology of self disorder in schizophrenia: primary factors. Schizophr Res. 2015;169:464–73. https://doi.org/10.1016/j.schres.2015.09.024.

    Article  PubMed  Google Scholar 

  61. Nelson B, Whitford TJ, Lavoie S, Sass LA. What are the neurocognitive correlates of basic self-disturbance in schizophrenia?: Integrating phenomenology and neurocognition. Part 1 (Source monitoring deficits). Schizophr Res. 2014;152(1):12–9. https://doi.org/10.1016/j.schres.2013.06.022.

    Article  CAS  PubMed  Google Scholar 

  62. Sass L, Borda JP, Madeira L, Pienkos E, Nelson B. Varieties of self disorder: a bio-pheno-social model of schizophrenia. Schizophr Bull. 2018;44:720–7. https://doi.org/10.1093/schbul/sby001.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Poletti M, Gebhardt E, Raballo A. Corollary discharge, self-agency, and the neurodevelopment of the psychotic mind. JAMA Psychiat. 2017;74:1169–70. https://doi.org/10.1001/jamapsychiatry.2017.2824.

    Article  Google Scholar 

  64. Poletti M, Gebhardt E, Kvande MN, Ford J, Raballo A. Motor impairment and developmental psychotic risk: connecting the dots and narrowing the pathophysiological gap. Schizophr Bull. 2019;45:503–8. https://doi.org/10.1093/schbul/sby100.

    Article  PubMed  Google Scholar 

  65. Poletti M, Tortorella A, Raballo A. Impaired corollary discharge in psychosis and at-risk states: integrating neurodevelopmental, phenomenological, and clinical perspectives. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:832–41. https://doi.org/10.1016/j.bpsc.2019.05.008.

    Article  PubMed  Google Scholar 

  66. Shorter E, Wachtel LE. Childhood catatonia, autism and psychosis past and present: is there an “iron triangle”? Acta Psychiatr Scand. 2013;128:21–33. https://doi.org/10.1111/acps.12082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fantozzi P, Del Grande C, Berloffa S, Tolomei G, Salluce C, Narzisi A, Salarpi G, Capovani B, Masi G. Neurodevelopmental disorders, schizophrenia spectrum disorders and catatonia: the “iron triangle” rediscovered in a case report. Children (Basel). 2022;10:77. https://doi.org/10.3390/children10010077.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Leslie AC, O’Sullivan M. The triad of childhood-onset schizophrenia, autism spectrum disorder, and catatonia: a case report. Schizophr Bull. 2023;49:239–43. https://doi.org/10.1093/schbul/sbac200.

    Article  PubMed  Google Scholar 

  69. Lång U, Ramsay H, Yates K, Veijola J, Gyllenberg D, Clarke MC, Leacy FP, Gissler M, Kelleher I. Potential for prediction of psychosis and bipolar disorder in Child and Adolescent Mental Health Services: a longitudinal register study of all people born in Finland in 1987. World Psychiatry. 2022;21:436–43. https://doi.org/10.1002/wps.21009. This paper showed the potential of medical records of mental health services for children and adolescent to predict adult outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schultze-Lutter F, Ruhrmann S, Berning J, Maier W, Klosterkötter J. Basic symptoms and ultrahigh risk criteria: symptom development in the initial prodromal state. Schizophr Bull. 2010;36:182–91. https://doi.org/10.1093/schbul/sbn072.

    Article  PubMed  Google Scholar 

  71. Poletti M, Raballo A. Uncanny mirroring: a developmental perspective on the neurocognitive origins of self-disorders in schizophrenia. Psychopathology. 2019;52:316–25. https://doi.org/10.1159/000504676.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MP wrote the manuscript, reviewed it and approved final submission

Corresponding author

Correspondence to Michele Poletti.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletti, M. The Iron Triangle of Familiarity for Severe Mental Illness, Developmental Coordination Disorder and Risk of Psychosis: Recognize to Prevent. Curr Dev Disord Rep 10, 286–292 (2023). https://doi.org/10.1007/s40474-023-00286-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-023-00286-4

Keywords

Navigation