Skip to main content

Advertisement

Log in

Virologic Studies in COVID-Positive Donors

  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The demand and supply disparity of solid organs is a vital issue affecting the survival of patients with advanced organ failures. The COVID-19 pandemic resulted in millions of deaths leading to an enormous amount of potentially transplantable organs. However, due to knowledge gap on safety of these solid organs, tons of them were discarded. This review helps to understand important clinical aspects of solid organ transplantation from COVID + donors.

Recent Findings

Transplantation of solid organs from COVID + donors are safe and effective with excellent short-term outcomes and can potentially result in reduction of mortality in patients with advanced organ dysfunctions.

Summary

This review focuses on epidemiology, center norms, safety, short-term clinical outcomes, and the need to understand long-term clinical outcomes, including allograft functions, risk of rejections, coinfections, and immune changes toward future COVID infections in the setting of solid organ transplant from COVID-19-positive donors with the potential presence of inactive viral proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

US:

United States

COVID-19:

Coronavirus disease-2019

NAT:

Nucleic acid testing

NAAT:

Nucleic acid amplification testing

KDPI:

Kidney donor profile index

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

OPTN:

The Organ Procurement and Transplantation Network

STAR:

Standard transplant analysis research

UNOS:

United Network of Organ Sharing

PCR:

Polymerase chain reaction

RNA:

Ribonucleic acid

IS:

Immunosuppression

CDC:

Center for disease control and prevention

anti-N:

Nucleocapsid protein

Tixagevimab/cilgavimab:

Evusheld

S:

Spike

E:

Envelope

M:

Membrane

N:

Nucleocapsid proteins

ACE2:

Angiotensin-converting enzyme 2

AT1R:

Angiotensin-1 receptor

ARB:

Angiotensin receptor blockers

RAAS:

Renin-angiotensin-aldosterone-system

AT2R:

Angiotension-2 receptor

SGLT2:

Sodium-glucose cotransporter 2

DDTE:

Donor-derived transmission events

APOL1 :

Apolipoprotein L1

COVAN:

COVID-19-associated nephropathy

eGFR:

Estimated glomerular filtration rate

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organ Donation Statistics|organdonor.gov 2023 Available from: https://www.organdonor.gov/learn/organ-donation-statistics. Accessed Mar 2023.

  2. UNOS Waiting list candidates by age. n.d. Available from: https://unos.org/data/transplant-trends/waiting-list-candidates-by-age. Accessed Mar 2023.

  3. National data-OPTN 2023 Available from: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#. Accessed Mar 2023.

  4. Times TNY. Coronavirus in the U.S.: latest map and case count. In: The New York Times; 2020. Available from: https://www.nytimes.com/interactive/2021/us/covid-cases.html. Accessed Mar 2023.

  5. Centers for disease control and prevention 2023 Coronavirus Disease 2019 Available from: https://www.cdc.gov/media/releases/2022/s0422-third-leading-cause.html. Accessed Mar 2023.

  6. Frattaroli P, Anjan S, Coro A, Simkins J, Vianna R, Morsi M, et al. Is it safe to perform abdominal transplantation from SARS-CoV-2 polymerase chain reaction positive donors? Transpl Infect Dis. 2021;23(5):e13688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bock MJ, Vaughn GR, Chau P, Berumen JA, Nigro JJ, Ingulli EG. Organ transplantation using COVID-19-positive deceased donors. Am J Transplant. 2022; https://doi.org/10.1111/ajt.17145.

  8. • Gupta G, Azhar A, Gungor A, Molnar MZ, Morales MK, Tanriover B. Early data on utilization and discard of organs from COVID-19–infected donors: a US national registry analysis. Transplantation. 2022;106(5):e266–8. Demonstrates discard rate of solid organs from COVID positive donors

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donor testing document.pdf 2022 Available from: https://www.myast.org/sites/default/files/Education/2022%20Donor%20Testing%20Document.pdf. Accessed Mar 2023.

  10. Kaul DR, Valesano AL, Petrie JG, Sagana R, Lyu D, Lin J, et al. Donor to recipient transmission of SARS-CoV-2 by lung transplantation despite negative donor upper respiratory tract testing. Am J Transplant. 2021;21(8):2885–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar D, Humar A, Keshavjee S, Cypel M. A call to routinely test lower respiratory tract samples for SARS-CoV-2 in lung donors. Am J Transplant. 2021;21(7):2623–4.

    Article  CAS  PubMed  Google Scholar 

  12. Dhand A, Okumura K, Nabors C, Nishida S. Solid organ transplantation from COVID positive donors in the United States: analysis of united network for organ sharing database. Transpl Infect Dis. 2022;9:e13925.

    Google Scholar 

  13. Molnar MZ, Hall IE, Raghavan D, Shihab F, Imlay H, Hanson KE, et al. Kidney transplantation from SARS-CoV-2–positive deceased donor. Am J Transplant. 2022;22(4):1280–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. OPTN policies to align with 2020 U.S public health service guideline-OPTN 2023. Available from: https://optn.transplant.hrsa.gov/professionals/by-topic/patient-safety/optn-policies-to-align-with-2020-us-public-health-service-guideline/. Accessed Mar 2023.

  15. Peghin M, Grossi PA. COVID-19 positive donor for solid organ transplantation. J Hepatol. 2022;77(4):1198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Yamauchi J, Azhar A, Hall IE, Bhalla A, Potluri VS, Tanriover B, et al. Comparison of short-term outcomes in kidney transplant recipients from SARS-CoV-2–infected versus noninfected deceased donors. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.0000000000000275.

  17. Schold JD, Koval CE, Wee A, Eltemamy M, Poggio ED. Utilization and outcomes of deceased donor SARS-CoV-2–positive organs for solid organ transplantation in the United States. Am J Transplant. 2022;22(9):2217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Koval CE, Eltemamy M, Poggio ED, Schold JD, Wee AC. Comparative outcomes for over 100 deceased donor kidney transplants from SARS-CoV-2 positive donors: a single-center experience. Am J Transplant. 2022;22(12):2903–11.

    Article  PubMed  Google Scholar 

  19. Koval CE, Poggio ED, Lin YC, Kerr H, Eltemamy M, Wee A. Early success transplanting kidneys from donors with new SARS-CoV-2 RNA positivity: a report of 10 cases. Am J Transplant. 2021;21(11):3743–9.

    Article  CAS  PubMed  Google Scholar 

  20. Azhar A, Kleiboeker S, Khorsandi S, Duncan Kilpatrick M, Khan A, Gungor A, et al. Detection of transmissible severe acute respiratory syndrome coronavirus-2 from deceased kidney donors: implications for kidney transplant recipients. Transplantation. 2023;107(2):e65.

    Article  CAS  PubMed  Google Scholar 

  21. Manzia TM, Gazia C, Lenci I, Angelico R, Toti L, Monaco A, et al. Liver transplantation performed in a SARS-CoV-2 positive hospitalized recipient using a SARS-CoV-2 infected donor. Am J Transplant. 2021;21(7):2600–4.

    Article  CAS  PubMed  Google Scholar 

  22. Summary of current evidence and information–donor SARS-CoV-2 testing & organ recovery from donors with a history of COVID-19. [Internet]. Report No.: Version 6: August 22, 2022. Available from: https://optn.transplant.hrsa.gov/media/kkhnlwah/sars-cov-2-summary-ofevidence.pdf

  23. Lower respiratory SARS-CoV-2 testing for lung donors. [Internet]. Ad Hoc Disease Transmission Advisory; 2021 May. Available from: https://optn.transplant.hrsa.gov/policiesbylaws/public-comment/require-lower-respiratory-sars-cov-2-testing-for-lung-donors/

  24. idsa-amp-statement.pdf 2023 Available from: https://www.idsociety.org/globalassets/idsa/public-health/covid-19/idsa-amp-statement.pdf. Accessed Mar 2023.

  25. Martinez-Reviejo R, Tejada S, Cipriano A, Karakoc HN, Manuel O, Rello J. Solid organ transplantation from donors with recent or current SARS-CoV-2 infection: a systematic review. Anaesth Crit Care Pain Med. 2022;41(4):101098.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hwang J, Yuen A, Rhoades J, Barnes D, Zakowski P, Megna DJ, et al. Real-time transcription polymerase chain reaction cycle threshold values as criteria for utilization of incidental COVID-19 positive lung donors. J Heart Lung Transplant. 2022; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794393/. Accessed Mar 2023.

  27. Klingler J, Weiss S, Itri V, Liu X, Oguntuyo KY, Stevens C, et al. Role of IgM and IgA antibodies in the neutralization of SARS-CoV-2. medRxiv. 2020;

  28. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11.

    Article  CAS  PubMed  Google Scholar 

  29. Tixagevimab and cilgavimab (Evusheld) for pre-exposure prophylaxis of COVID-19. JAMA. 2022;327(4):384–5.

  30. COVID-19 update: Evusheld unlikely to neutralize XBB.1.5 Omicron variant. Med Lett Drugs Ther. 2023 Feb 6;65(1669):e25.

  31. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  32. COVID-19 update: Evusheld unlikely to neutralize XBB.1.5 Omicron variant [Internet]. The Medical Letter on Drugs and Therapeutics; 2023. Available from: https://secure.medicalletter.org/TML-article-1669e

  33. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Natori Y, Anjan S, Simkins J, Abbo L, Martin E, Garcia J, et al. Small bowel transplantation from SARS-CoV-2 respiratory PCR positive donors: is it safe? Transpl Infect Dis. 2021;23(6):e13752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kipkorir V, Cheruiyot I, Ngure B, Misiani M, Munguti J. Prolonged SARS-CoV-2 RNA detection in anal/rectal swabs and stool specimens in COVID-19 patients after negative conversion in nasopharyngeal RT-PCR test. J Med Virol. 2020;92(11):2328–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg Microbes Infect. 2020;9(1):991–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du F, Liu B, Zhang S. COVID-19: the role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness. J Thromb Thrombolysis. 2021;51(2):313–29.

    Article  CAS  PubMed  Google Scholar 

  38. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: molecular mechanisms and implications. Inflammation. 2021;44(1):13–34.

    Article  CAS  PubMed  Google Scholar 

  39. Onabajo OO, Banday AR, Stanifer ML, Yan W, Obajemu A, Santer DM, et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet. 2020;52(12):1283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cozzi E, Calabrese F, Schiavon M, Feltracco P, Seveso M, Carollo C, et al. Immediate and catastrophic antibody-mediated rejection in a lung transplant recipient with anti-angiotensin II receptor type 1 and anti-endothelin-1 receptor type A antibodies. Am J Transplant. 2017;17(2):557–64.

    Article  CAS  PubMed  Google Scholar 

  41. Papola F, Biancofiore V, Angeletti C, Grimaldi A, Carucci AC, Cofini V, et al. Anti-AT1R autoantibodies and prediction of the severity of Covid-19. Hum Immunol. 2022;83(2):130–3.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang Y, Duffy F, Hadlock J, Raappana A, Styrchak S, Beck I, et al. Angiotensin II receptor I auto-antibodies following SARS-CoV-2 infection. PLoS ONE. 2021;16(11):e0259902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miedema J, Schreurs M, Paats M, Baart S, Bakker M, Hoek R, Dik WA, Endeman H, Van Der Velden V, van Gammeren A, Ermens A. Antibodies against angiotensin II receptor type 1 and endothelin A receptor are associated with an unfavorable COVID19 disease course. Front Immunol. 2021; Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.684142. Accessed Mar 2023.

  44. Steckelings UM, Sumners C. Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clin Sci Lond Engl. 1979;134(22):2987–3006.

    Article  Google Scholar 

  45. Muskiet MHA, van Raalte DH, van Bommel EJ, Smits MM, Tonneijck L. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015;3(12):928–9.

    Article  PubMed  Google Scholar 

  46. Goldman JD, Pouch SM, Woolley AE, Booker SE, Jett CT, Fox C, et al. Transplant of organs from donors with positive SARS-CoV-2 nucleic acid testing: a report from the organ procurement and transplantation network ad hoc disease transmission advisory committee. Transpl Infect Dis. :e14013.

  47. Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClin Med. 2020;20(29–30):100639.

    Google Scholar 

  48. Law N, Chan J, Kelly C, Auffermann WF, Dunn DP. Incidence of pulmonary embolism in COVID-19 infection in the ED: ancestral, Delta Omicron variants and vaccines. Emerg Radiol. 2022;29(4):625–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta Int J Clin Chem. 2020;507:167–73.

    Article  CAS  Google Scholar 

  50. Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management. Thromb Res. 2020;194:101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu S. wen, Ilyas I, Weng J ping. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44(4):695–709.

    Article  CAS  PubMed  Google Scholar 

  52. Schimmel L, Chew KY, Stocks CJ, Yordanov TE, Essebier P, Kulasinghe A, et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunol. 2021;10(10):e1350.

    Article  CAS  Google Scholar 

  53. Perrucci GL, Sommariva E, Ricci V, Songia P, D’Alessandra Y, Poggio P, et al. Presence of SARS-CoV-2 nucleoprotein in cardiac tissues of donors with negative COVID-19 molecular tests. Diagnostics. 2021;11(4):731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohamed MMB, Velez JCQ. Proteinuria in COVID-19. Clin Kidney J. 2021;14(Suppl 1):i40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Velez JCQ, Caza T, Larsen CP. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat Rev Nephrol. 2020;16(10):565–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peleg Y, Kudose S, D’Agati V, Siddall E, Ahmad S, Nickolas T, et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney Int Rep. 2020;5(6):940–5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA. Collapsing glomerulopathy in a patient with COVID-19. Kidney Int Rep. 2020;5(6):935–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shetty AA, Tawhari I, Safar-Boueri L, Seif N, Alahmadi A, Gargiulo R, et al. COVID-19–associated glomerular disease. J Am Soc Nephrol. 2021;32(1):33.

    Article  CAS  PubMed  Google Scholar 

  59. Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 2022;29(2):217–231.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hassler L, Batlle D. Potential SARS-CoV-2 kidney infection and paths to injury. Nat Rev Nephrol. 2022;18(5):275–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bharat A, Querrey M, Markov NS, Kim S, Kurihara C, Garza-Castillon R, et al. Lung transplantation for patients with severe COVID-19. Sci Transl Med. 2020;12(574):eabe4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hartmann C, Doss MA, J da S M, Baena Carstens L, Busatta Vaz De Paula C, Fagundes Grobe S, et al. The pathogenesis of COVID-19 myocardial injury: an immunohistochemical study of postmortem biopsies. Front Immunol. 2021; Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.748417. Accessed Mar 2023.

  63. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: possible mechanisms. Life Sci. 2020;15(253):117723.

    Article  Google Scholar 

  64. Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7(5):2440–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Alqahtani A, Alamer E, Mir M, Alasmari A, Alshahrani MM, Asiri M, et al. Bacterial coinfections increase mortality of severely Ill COVID-19 patients in Saudi Arabia. Int J Environ Res Public Health. 2022;19(4):2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Silva DL, Lima CM, Magalhães VCR, Baltazar LM, Peres NTA, Caligiorne RB, et al. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J Hosp Infect. 2021;113:145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh K, Kumar S, Shastri S, Sudershan A, Mansotra V. Black fungus immunosuppressive epidemic with COVID-19 associated mucormycosis (zygomycosis): a clinical and diagnostic perspective from India. Immunogenetics. 2022;74(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  68. Kuehn BM. Aspergillosis is common among COVID-19 patients in the ICU. JAMA. 2021;326(16):1573.

    CAS  PubMed  Google Scholar 

  69. Cafardi J, Haas D, Lamarre T, Feinberg J. Opportunistic fungal infection associated with COVID-19. Open Forum. Infect Dis. 2021;8(7):ofab016.

    Google Scholar 

  70. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H, Abraham A, Jeda AS, et al. Bacterial co-infections with SARS-CoV-2. Iubmb. Life. 2020;72(10):2097–111.

    CAS  PubMed  Google Scholar 

  71. Lai PY, Vu A, Sarva ST, Jayaraman G, Kesavan R. Parvovirus reactivation in COVID-19. Cureus. 13(9):e17796.

  72. Meshram HS, Kute VB, Chauhan S. BK polyomavirus infection following COVID-19 infection in renal transplant recipients: a single-center experience. Kidney Res Clin Pract. 2021;40(3):496–500.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gatto I, Biagioni E, Coloretti I, Farinelli C, Avoni C, Caciagli V, et al. Cytomegalovirus blood reactivation in COVID-19 critically ill patients: risk factors and impact on mortality. Intensive Care Med. 2022;48(6):706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dadashi M, Khaleghnejad S, Abedi Elkhichi P, Goudarzi M, Goudarzi H, Taghavi A, et al. COVID-19 and influenza co-infection: a systematic review and meta-analysis. Front Med. 2021;8:681469.

    Article  Google Scholar 

  75. Goldberg DS, Abt PL, Blumberg EA, Van Deerlin VM, Levine M, Reddy KR, et al. Trial of transplantation of HCV-infected kidneys into uninfected recipients. N Engl J Med. 2017;376(24):2394–5.

    Article  PubMed  Google Scholar 

  76. Joglekar K, Eason JD, Molnar MZ. Do we really need more evidence to use hepatitis C positive donor kidney more liberally? Clin Kidney J. 2017;10(4):560–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gupta G, Yakubu I, Bhati CS, Zhang Y, Kang L, Patterson JA, et al. Ultra-short duration direct acting antiviral prophylaxis to prevent virus transmission from hepatitis C viremic donors to hepatitis C negative kidney transplant recipients. Am J Transplant. 2020;20(3):739–51.

    Article  CAS  PubMed  Google Scholar 

  78. Molnar MZ, Azhar A, Tsujita M, Talwar M, Balaraman V, Bhalla A, et al. Transplantation of kidneys from hepatitis C virus-infected donors to hepatitis C virus-negative recipients: one-year kidney allograft outcomes. Am J Kidney Dis. 2021;77(5):739–747.e1.

    Article  CAS  PubMed  Google Scholar 

  79. Potluri VS, Goldberg DS, Mohan S, Bloom RD, Sawinski D, Abt PL, et al. National trends in utilization and 1-year outcomes with transplantation of HCV-viremic kidneys. J Am Soc Nephrol JASN. 2019;30(10):1939–51.

    Article  PubMed  Google Scholar 

  80. Sharma P, Ng JH, Bijol V, Jhaveri KD, Wanchoo R. Pathology of COVID-19-associated acute kidney injury. Clin Kidney J. 2021;14(Suppl 1):i30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sanchez-Vivaldi JA, Patel MS, Shah JA, Wang BK, Salcedo-Betancourt JD, Hwang CS, et al. Short-term kidney transplant outcomes from severe acute respiratory syndrome coronavirus 2 lower respiratory tract positive donors. Transpl Infect Dis. 2022;24(4):13890.

    Article  CAS  PubMed  Google Scholar 

  82. Kute VB, Fleetwood VA, Meshram HS, Guenette A, Lentine KL. Use of organs from SARS-CoV-2 infected donors: is it safe? A Contemporary Review. Curr Transplant Rep. 2021;8(4):281–92.

    Article  PubMed  Google Scholar 

  83. Lin YC, Kahlil M, Eltemamy M, Kerr H, Krishnamurthi V, Goldfarb D, et al. Mp36-01 kidney transplantation with COVID-19 positive donors: a series of 55 cases. J Urol. 2022;207(Supplement 5):e596.

    Article  Google Scholar 

  84. Miller SE, Brealey JK. Visualization of putative coronavirus in kidney. Kidney Int. 2020;98(1):231–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 and the kidney: what we think we know so far and what we don’t. J Nephrol. 2020;33(6):1213–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol JASN. 2020;31(8):1683–7.

    Article  CAS  PubMed  Google Scholar 

  87. Lagana SM, Kudose S, Iuga AC, Lee MJ, Fazlollahi L, Remotti HE, et al. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. Mod Pathol. 2020;33(11):2147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Y, Xiao SY. Hepatic involvement in COVID-19 patients: pathology, pathogenesis, and clinical implications. J Med Virol. 2020;92(9):1491–4.

    Article  CAS  PubMed  Google Scholar 

  89. Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020;1(6):e245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chu H, Peng L, Hu L, Zhu Y, Zhao J, Su H, et al. Liver histopathological analysis of 24 postmortem findings of patients with COVID-19 in China. Front Med. 2021:8. https://doi.org/10.3389/fmed.2021.749318.

  91. Caramaschi S, Kapp ME, Miller SE, Eisenberg R, Johnson J, Epperly G, et al. Histopathological findings and clinicopathologic correlation in COVID-19: a systematic review. Mod Pathol. 2021;34(9):1614–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fox SE, Li G, Akmatbekov A, Harbert JL, Lameira FS, Brown JQ, et al. Unexpected features of cardiac pathology in COVID-19 infection. Circulation. 2020;142(11):1123–5.

    Article  CAS  PubMed  Google Scholar 

  93. Verma AK, Lavine KJ, Lin CY. Myocarditis after COVID-19 mRNA vaccination. N Engl J Med. 2021;385(14):1332–4.

    Article  CAS  PubMed  Google Scholar 

  94. Milross L, Majo J, Cooper N, Kaye PM, Bayraktar O, Filby A, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Health Resources and Services Administration contract HHSH250-2019-00001C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Gupta.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, A., Tanriover, B., Gungor, A.B. et al. Virologic Studies in COVID-Positive Donors. Curr Transpl Rep 10, 199–209 (2023). https://doi.org/10.1007/s40472-023-00411-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-023-00411-7

Keywords

Navigation