Skip to main content

Advertisement

Log in

Macrophages as Effectors of Acute and Chronic Allograft Injury

Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Organ transplants give a second chance of life to patients with end-stage organ failure. However, the immunological barriers prove to be very challenging to overcome and graft rejection remains a major hurdle to long-term transplant survival. For decades, adaptive immunity has been the focus of studies, primarily based on the belief that T cells are necessary and sufficient for rejection. With better-developed immunosuppressive drugs and protocols that effectively control adaptive cells, innate immune cells have emerged as key effector cells in triggering graft injury and have therefore attracted much recent attention. In this review, we discuss current understanding of macrophages and their role in transplant rejection, their dynamics, distinct phenotypes, locations, and functions. We also discuss novel therapeutic approaches under development to target macrophages in transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Libby P, Pober JS. Chronic rejection. Immunity. 2001;14(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  2. Brent L, Brown J, Medawar PB. Skin transplantation immunity in relation to hypersensitivity. Lancet. 1958;2(7046):561–4.

    Article  CAS  PubMed  Google Scholar 

  3. Moreau A, Varey E, Anegon I, Cuturi MC. Effector mechanisms of rejection. Cold Spring Harb Perspect Med. 2013;3(11):a015461.

  4. Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The mononuclear phagocyte system in organ transplantation. Am J Transplant. 2016;16(4):1053–69.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang X, Tian W, Sung YK, Qian J, Nicolls MR. Macrophages in solid organ transplantation. Vasc Cell. 2014;6(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Loke P, Gallagher I, Nair MG, et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol. 2007;179(6):3926–36.

    Article  CAS  PubMed  Google Scholar 

  7. Maier S, Tertilt C, Chambron N, et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice. Nat Med. 2001;7(5):557–62.

    Article  CAS  PubMed  Google Scholar 

  8. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med. 2006;203(8):1851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Min X, Liu C, Wei Y, et al. Expression and regulation of complement receptors by human natural killer cells. Immunobiology. 2014;219(9):671–9.

    Article  CAS  PubMed  Google Scholar 

  10. Medzhitov R, Janeway Jr CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.

    Article  CAS  PubMed  Google Scholar 

  11. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14(2):94–108.

    Article  CAS  PubMed  Google Scholar 

  12. Castellano G, Melchiorre R, Loverre A, et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am J Pathol. 2010;176(4):1648–59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011;11(3):450–62.

    Article  CAS  PubMed  Google Scholar 

  14. Naesens M, Khatri P, Li L, et al. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. Kidney Int. 2011;80(12):1364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy SP, Porrett PM, Turka LA. Innate immunity in transplant tolerance and rejection. Immunol Rev. 2011;241(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  16. Gill RG. NK cells: elusive participants in transplantation immunity and tolerance. Curr Opin Immunol. 2010;22(5):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7(8):610–21.

    Article  CAS  PubMed  Google Scholar 

  18. Magil AB. Monocytes/macrophages in renal allograft rejection. Transplant Rev (Orlando). 2009;23(4):199–208.

    Article  Google Scholar 

  19. de Vries VC, Noelle RJ. Mast cell mediators in tolerance. Curr Opin Immunol. 2010;22(5):643–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mantovani A, Garlanda C, Locati M. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol. 2009;29(10):1419–23.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  22. •Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. The is an excellent review on macrophage subsets, in vivo dynamics, and challenging issues in future studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  25. Sierra-Filardi E, Vega MA, Sanchez-Mateos P, Corbi AL, Puig-Kroger A. Heme oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology. 2010;215(9–10):788–95.

    Article  CAS  PubMed  Google Scholar 

  26. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

  28. Dzik JM. Evolutionary roots of arginase expression and regulation. Front Immunol. 2014;5:544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010;20(6):701–12.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation. 2013;36(4):921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  33. London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.

    Article  CAS  PubMed  Google Scholar 

  35. Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14(10):1227–35.

    Article  CAS  PubMed  Google Scholar 

  36. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.

    Article  CAS  PubMed  Google Scholar 

  38. Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34(5):651–64.

    Article  CAS  PubMed  Google Scholar 

  39. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Auffray C, Fogg DK, Narni-Mancinelli E, et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med. 2009;206(3):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber C, Weber KS, Klier C, et al. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood. 2001;97(4):1144–6.

    Article  CAS  PubMed  Google Scholar 

  42. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  43. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871–82.

    Article  CAS  PubMed  Google Scholar 

  44. Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93(6):875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.

    CAS  PubMed  Google Scholar 

  49. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Munder M, Schneider H, Luckner C, et al. Suppression of T-cell functions by human granulocyte arginase. Blood. 2006;108(5):1627–34.

    Article  CAS  PubMed  Google Scholar 

  51. Stempin CC, Dulgerian LR, Garrido VV, Cerban FM. Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol. 2010;2010:683485.

    Article  PubMed  CAS  Google Scholar 

  52. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158(3):638–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.

    PubMed  PubMed Central  Google Scholar 

  54. Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.

    Article  CAS  PubMed  Google Scholar 

  55. Taetzsch T, Levesque S, McGraw C, et al. Redox regulation of NF-kappaB p50 and M1 polarization in microglia. Glia. 2015;63(3):423–40.

    Article  PubMed  Google Scholar 

  56. da Silva RF, Lappalainen J, Lee-Rueckert M, Kovanen PT. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis. 2016;248:170–8.

    Article  PubMed  CAS  Google Scholar 

  57. ••Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–8. This study demonstrates the importance of the transcription factor IRF5 in macrophage polarization and the impact on Th1/Th17 responses.

    Article  CAS  PubMed  Google Scholar 

  58. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009;86(2):411–21.

    Article  CAS  PubMed  Google Scholar 

  59. Takeda K, Tanaka T, Shi W, et al. Essential role of Stat6 in IL-4 signalling. Nature. 1996;380(6575):627–30.

    Article  CAS  PubMed  Google Scholar 

  60. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–38.

    Article  CAS  PubMed  Google Scholar 

  61. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  62. Chawla A. Control of macrophage activation and function by PPARs. Circ Res. 2010;106(10):1559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  64. Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011;121(7):2736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van den Bossche J, Neele AE, Hoeksema MA, de Winther MP. Macrophage polarization: the epigenetic point of view. Curr Opin Lipidol. 2014;25(5):367–73.

    Article  PubMed  CAS  Google Scholar 

  66. Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11(10):936–44.

    Article  CAS  PubMed  Google Scholar 

  67. De Santa F, Narang V, Yap ZH, et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28(21):3341–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–94.

    Article  PubMed  CAS  Google Scholar 

  69. Chen X, Barozzi I, Termanini A, et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A. 2012;109(42):E2865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011;25(23):2480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •Kugelberg E. Macrophages: controlling innate immune memory. Nat Rev Immunol. 2015;15(10):596. This is a very informative review on memory features of innate immune cells.

    Article  CAS  PubMed  Google Scholar 

  72. Bordon Y. Macrophages: innate memory training. Nat Rev Immunol. 2014;14(11):713.

    Article  CAS  PubMed  Google Scholar 

  73. Penfield JG, Wang Y, Li S, et al. Transplant surgery injury recruits recipient MHC class II-positive leukocytes into the kidney. Kidney Int. 1999;56(5):1759–69.

    Article  CAS  PubMed  Google Scholar 

  74. Rugtveit J, Scott H, Halstensen TS, Norstein J, Brandtzaeg P. Expression of the L1 antigen (calprotectin) by tissue macrophages reflects recent recruitment from peripheral blood rather than upregulation of local synthesis: implications for rejection diagnosis in formalin-fixed kidney specimens. J Pathol. 1996;180(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  75. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Stallone G, Schena FP. Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation. 1997;63(3):414–20.

    Article  CAS  PubMed  Google Scholar 

  76. Li L, Huang L, Sung SS, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008;74(12):1526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grau V, Gemsa D, Steiniger B, Garn H. Chemokine expression during acute rejection of rat kidneys. Scand J Immunol. 2000;51(5):435–40.

    Article  CAS  PubMed  Google Scholar 

  78. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol. 2002;3(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  79. Grau V, Herbst B, Steiniger B. Dynamics of monocytes/macrophages and T lymphocytes in acutely rejecting rat renal allografts. Cell Tissue Res. 1998;291(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  80. Nayak DK, Zhou F, Xu M, Huang J, Tsuji M, Hachem R, et al. Long-term persistence of donor alveolar macrophages in human lung transplant recipients that influences donor specific immune responses. Am J Transplant. 2016.

  81. ••Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104. This paper made seminal discovery that tissue resident macrophages in the heart exhibit distinct developmental origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jose MD, Le Meur Y, Atkins RC, Chadban SJ. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant. 2003;3(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  83. Abe T, Su CA, Iida S, et al. Graft-derived CCL2 increases graft injury during antibody-mediated rejection of cardiac allografts. Am J Transplant. 2014;14(8):1753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schaefer N, Tahara K, von Websky M, et al. Role of resident macrophages in the immunologic response and smooth muscle dysfunction during acute allograft rejection after intestinal transplantation. Transpl Int. 2008;21(8):778–91.

    Article  CAS  PubMed  Google Scholar 

  85. Qi F, Adair A, Ferenbach D, et al. Depletion of cells of monocyte lineage prevents loss of renal microvasculature in murine kidney transplantation. Transplantation. 2008;86(9):1267–74.

    Article  CAS  PubMed  Google Scholar 

  86. Chadban SJ, Wu H, Hughes J. Macrophages and kidney transplantation. Semin Nephrol. 2010;30(3):278–89.

    Article  CAS  PubMed  Google Scholar 

  87. Jose MD, Ikezumi Y, van Rooijen N, Atkins RC, Chadban SJ. Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation. 2003;76(7):1015–22.

    Article  CAS  PubMed  Google Scholar 

  88. Takeiri M, Tachibana M, Kaneda A, et al. Inhibition of macrophage activation and suppression of graft rejection by DTCM-glutarimide, a novel piperidine derived from the antibiotic 9-methylstreptimidone. Inflamm Res. 2011;60(9):879–88.

    Article  CAS  PubMed  Google Scholar 

  89. Kipari T, Cailhier JF, Ferenbach D, et al. Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am J Pathol. 2006;169(2):388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Famulski KS, Kayser D, Einecke G, et al. Alternative macrophage activation-associated transcripts in T-cell-mediated rejection of mouse kidney allografts. Am J Transplant. 2010;10(3):490–7.

    Article  CAS  PubMed  Google Scholar 

  91. Mannon RB. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders? Curr Opin Organ Transplant. 2012;17(1):20–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kloc M, Ghobrial RM. Chronic allograft rejection: a significant hurdle to transplant success. Burns Trauma. 2014;2(1):3–10.

  93. Thaunat O, Nicoletti A. Lymphoid neogenesis in chronic rejection. Curr Opin Organ Transplant. 2008;13(1):16–9.

    Article  PubMed  Google Scholar 

  94. Stewart S, Winters GL, Fishbein MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24(11):1710–20.

    Article  PubMed  Google Scholar 

  95. Michaels PJ, Kobashigawa J, Laks H, et al. Differential expression of RANTES chemokine, TGF-beta, and leukocyte phenotype in acute cellular rejection and quilty B lesions. J Heart Lung Transplant. 2001;20(4):407–16.

    Article  CAS  PubMed  Google Scholar 

  96. Kitchens WH, Chase CM, Uehara S, et al. Macrophage depletion suppresses cardiac allograft vasculopathy in mice. Am J Transplant. 2007;7(12):2675–82.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang L, Kloc M, Tejpal N, You J, Cordero-Reyes A, Youker K, Ghobrial RM. Rock1 inhibitor abrogates chronic rejection in rat cardiac model system. Open J Organ Transplant Surg. 2012;2:46–51.

  98. Hutchinson JA. Macrophages in transplantation. Transplantation. 2015;99(5):898–9.

    Article  PubMed  Google Scholar 

  99. Toki D, Zhang W, Hor KL, et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation. Am J Transplant. 2014;14(9):2126–36.

    Article  CAS  PubMed  Google Scholar 

  100. Ikezumi Y, Suzuki T, Yamada T, et al. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol. 2015;30(6):1007–17.

    Article  PubMed  Google Scholar 

  101. Kaul AM, Goparaju S, Dvorina N, et al. Acute and chronic rejection: compartmentalization and kinetics of counterbalancing signals in cardiac transplants. Am J Transplant. 2015;15(2):333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chenglin W, Yue Z, Xiang X, Yihui F, Malgorzata K, Wentao L, et al. Graft infiltrating macrophages adopt a M2 phenotype and are inhibited by P2x7 receptor antagonist in chronic rejection. Am J Transplant. 2016;16(9):2563-73

  104. Mitchell RN. Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol. 2009;4:19–47.

    Article  CAS  PubMed  Google Scholar 

  105. Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100(3):550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22(2):317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hajkova M, Javorkova E, Zajicova A, Trosan P, Holan V, Krulova M. A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. J Tissue Eng Regen Med. 2015. doi:10.1002/term.2044.

  108. Terasaki PI, Ozawa M. Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant. 2004;4(3):438–43.

    Article  CAS  PubMed  Google Scholar 

  109. Loupy A, Toquet C, Rouvier P, et al. Late failing heart allografts: pathology of cardiac allograft vasculopathy and association with antibody-mediated rejection. Am J Transplant. 2016;16(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  110. Loupy A, Cazes A, Guillemain R, et al. Very late heart transplant rejection is associated with microvascular injury, complement deposition and progression to cardiac allograft vasculopathy. Am J Transplant. 2011;11(7):1478–87.

    Article  CAS  PubMed  Google Scholar 

  111. Shushakova N, Skokowa J, Schulman J, et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest. 2002;110(12):1823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119(8):1810–20.

    Article  CAS  PubMed  Google Scholar 

  113. Hoffmann U, Bergler T, Segerer S, et al. Impact of chemokine receptor CX3CR1 in human renal allograft rejection. Transpl Immunol. 2010;23(4):204–8.

    Article  CAS  PubMed  Google Scholar 

  114. Kakuta Y, Okumi M, Miyagawa S, et al. Blocking of CCR5 and CXCR3 suppresses the infiltration of macrophages in acute renal allograft rejection. Transplantation. 2012;93(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  115. Ehrchen J, Steinmuller L, Barczyk K, et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood. 2007;109(3):1265–74.

    Article  CAS  PubMed  Google Scholar 

  116. Sutterwala FS, Noel GJ, Salgame P, Mosser DM. Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med. 1998;188(1):217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thornley TB, Fang Z, Balasubramanian S, et al. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Invest. 2014;124(8):3443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Broichhausen C, Riquelme P, Ahrens N, et al. In question: the scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. Mol Ther Methods Clin Dev. 2014;1:14026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Riquelme P, Tomiuk S, Kammler A, et al. IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther. 2013;21(2):409–22.

    Article  CAS  PubMed  Google Scholar 

  120. Hutchinson JA, Riquelme P, Sawitzki B, et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol. 2011;187(5):2072–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the support from William Stamps Farish Fund, Donald D. Hammill Foundation, and the National Institutes of Health (R01AI080779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian C. Li.

Ethics declarations

Conflict of Interest

John Smith declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kloc, M. & Li, X.C. Macrophages as Effectors of Acute and Chronic Allograft Injury. Curr Transpl Rep 3, 303–312 (2016). https://doi.org/10.1007/s40472-016-0130-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0130-9

Keywords

Navigation