Skip to main content
Log in

Prey–predator nonlinear harvesting model with functional response incorporating prey refuge

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In the present paper, we propose a prey–predator model by considering some among of prey are refugees and predator interact with non refugees prey by class of functional responses. Here we also consider nonlinear harvesting for only non refugees prey. We discuss the equilibria of the model and their stability for hiding prey either in constant or proportional to the densities of prey population. Also we investigate various possibilities of bionomic equilibrium. Finally we present numerical example with graphical presentation of the various effect of the prey predator system parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malthus TR (1798) An essay on the principle of population, and a summary view of the principle of populations. Penguin, Harmondsworth

    Google Scholar 

  2. Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique 10:113–121

    Google Scholar 

  3. Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  4. Volterra V (1931) Leconssen la theorie mathematique de la leitte pou lavie. Gauthier–Villars, Paris

    Google Scholar 

  5. Pei Y, Liu S, Li C (2009) Complex dynamics of an impulsive control system in which predator species share a common prey. J Nonlinear Sci 19:249–266

    Article  MathSciNet  MATH  Google Scholar 

  6. Santra P, Mahapatra GS, Pal D (2015) Analysis of differential-algebraic prey-predator dynamical model with super predator harvesting on economic perspective. Int J Dynam Control doi:10.1007/s40435-015-0190-1

  7. Rebaza J (2012) Dynamics of prey threshold harvesting and refuge. J Comput Appl Math 236:1743–1752

    Article  MathSciNet  MATH  Google Scholar 

  8. Pal D, Mahapatra GS, Samanta GP (2014) Bifurcation analysis of predator–prey model with time delay and harvesting efforts using interval parameter. Int J Dyn Control doi:10.1007/s40435-014-0083-8

  9. Liu M, Wang K (2013) Analysis of a stochastic autonomous mutualism model. J Math Anal Appl 402:392–403

    Article  MathSciNet  MATH  Google Scholar 

  10. Sharma S, Samanta GP (2015) Analysis of a two prey one predator system with disease in the first prey population. Int J Dyn Control. doi:10.1007/s40435-014-0107-4

  11. Roy B, Roy SK (2015) Analysis of prey-predator three species models with vertebral and invertebral predators. Int J Dyn Control. doi:10.1007/s40435-015-0153-6

  12. Holling C (1965) The functional response of predator to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:3–60

    Google Scholar 

  13. Chen L, Chen F, Chen L (2010) Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal Real World Appl 11:246–252

    Article  MathSciNet  MATH  Google Scholar 

  14. Kar TK (2005) Stability analysis of a prey-predator model incorporating a prey refuge. Commun Nonlinear Sci Numer Simul 10:681–691

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z (2009) Effects of prey refuges on a predator-prey model with a class of function responses: the role of refuges. Math Biosci 218:73–79

    Article  MathSciNet  MATH  Google Scholar 

  16. Pal D, Mahapatra GS, Samanta GP (2013) Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math Biosci 241:181–187

    Article  MathSciNet  MATH  Google Scholar 

  17. Pal D, Mahapatra GS, Samanta GP (2014) A bioeconomic modeling of two prey and one-predator fishery model with optimal harvesting policy through hybridization approach. Appl Math Comput 242:748–763

    MathSciNet  MATH  Google Scholar 

  18. Pal D, Mahapatra GS, Samanta GP (2013) Quota harvesting model for a single species population under fuzziness. Int J Math Sci 12:33–46

    Google Scholar 

  19. Pal D, Mahapatra GS, Samanta GP (2015) Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM. Nonlinear Dyn 79:1939–1955

    Article  MATH  Google Scholar 

  20. Pal D, Mahapatra GS, Samanta GP (2012) A proportional harvesting dynamical model with fuzzy intrinsic growth rate and harvesting quantity. Pacific Asian J Math 6:199–213

    Google Scholar 

  21. Devi S (2012) Nonconstant prey harvesting in ratio-dependent predator-prey system incorporating a constant prey refuge. Int J Biomath 5(2):1250021

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai L, Li X, Song X (2008) Modeling and analysis of a harvesting fishery model in a two-patch environment. Int J Biomath 1(3):287–298

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji L, Wu C (2010) Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal Real World Appl 11:2285–2295

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen F, Ma Z, Zhang H (2012) Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey–predator model incorporating a constant number of prey refuges. Nonlinear Anal Real World Appl 13(6):2790–2793

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma Z, Wang S, Li W, Li Z (2013) The effect of prey refuge in a patchy predator–prey system. Math Biosci 243(1):126–130

    Article  MathSciNet  MATH  Google Scholar 

  26. Sarwardi S, Mandal PK, Ray S (2012) Analysis of a competitive prey–predator system with a prey refuge. Biosystems 110(3):133–148

    Article  Google Scholar 

  27. Frisvold GB, Reeves JM (2008) The costs and benefits of refuge requirements: the case of Bt cotton. Ecol Econ 65(1):87–97

    Article  Google Scholar 

  28. Jia Y, Xu H, Agarwal RP (2011) Existence of positive solutions for a prey–predator model with refuge and diffusion. Appl Math Comput 217(21):8264–8276

    MathSciNet  MATH  Google Scholar 

  29. Ghosh M (2010) Modeling prey–predator type fishery with reserve area. Int J Biomath 3(3):351–365

    Article  MathSciNet  Google Scholar 

  30. Chakraborty K, Chakraborty M, Kar TK (2011) Regulation of a prey–predator fishery incorporating prey refuge by taxation: a dynamic reaction model. J Biol Syst 19(3):417–445

  31. Liu X, Han M (2011) Chaos and Hopf bifurcation analysis for a two species predator–prey system with prey refuge and diffusion. Nonlinear Anal Real World Appl 12(2):1047–1061

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao Y, Wang X, Song X (2011) Effects of prey refuge on a harvested predator–prey model with generalized functional response. Commun Nonlinear Sci Numer Simul 16:1052–1059

    Article  MathSciNet  MATH  Google Scholar 

  33. Ross C, Garay J (2009) A predator–prey refuge system: evolutionary stability in ecological systems. Theor Popul Biol 76(4):248–257

    Article  Google Scholar 

  34. Li J, Huang P, Zhang R (2010) Modeling the refuge effect of submerged macrophytes in ecological dynamics of shallow lakes: a new model of fish functional response. Ecol Model 221(17):2076–2085

    Article  Google Scholar 

  35. Mukhopadhyay B, Bhattacharyya R (2012) Effects of deterministic and random refuge in a prey–predator model with parasite infection. Math Biosci 239(1):124–130

    Article  MathSciNet  MATH  Google Scholar 

  36. Maynard Smith J (1974) Models in ecology. Cambridge University, Cambridge

    Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees and the Editor-in-Chief Jian-Qiao Sun for their careful reading, valuable comments and helpful suggestions which have helped us to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, P., Mahapatra, G.S. & Pal, D. Prey–predator nonlinear harvesting model with functional response incorporating prey refuge. Int. J. Dynam. Control 4, 293–302 (2016). https://doi.org/10.1007/s40435-015-0198-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0198-6

Keywords

Navigation