Skip to main content
Log in

Second-order Krylov subspaces for model order reduction of buildings subjected to seismic excitation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Determining the dynamic response to earthquakes is critical for designing building structures in seismic zones. Nevertheless, a massive computational burden is usually demanded when large-scale mechanical models are required or in applications of design optimization and uncertainty quantification. Therefore, a growing interest in non-modal Model Order Reduction (MOR) strategies, initially developed in control engineering, has been observed in earthquake engineering in the last few years. In addition to avoiding the previous solution of the eigenvalue problem, they are straightforward to non-classically damped systems, a key feature for externally controlled structures. Hence, this paper presents an original non-modal MOR framework for controlled and uncontrolled buildings subjected to seismic excitations. The main aim is to combine second-order Krylov subspaces to perform the FE system projection with the Adaptative Windowing Algorithm (AWA) for an automatic definition of expansion points and subspace order, which ensures significant reductions in computational burden. The application cases, with distinct controlled and uncontrolled buildings, show that the proposed scheme can accelerate the computational time in all assessed scenarios, reaching a speed-up factor (SUF) more than 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Connor JJ, Pouangare CC (1991) Simple model for design of framed-tube structures. J Struct Eng 117(12):3623–3644. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:12(3623)

    Article  Google Scholar 

  2. Luco JE, De Barros FCP (1998) Control of the seismic response of a composite tall building modelled by two interconnected shear beams. Earthq Eng Struct Dyn 27(3):205–223. https://doi.org/10.1002/(SICI)1096-9845(199803)27:3\(<\)205::AID-EQE712\(>\)3.0.CO;2-X

  3. Hoenderkamp JCD (2002) Simplified analysis of asymmetric high-rise structures with cores. Struct Des Tall Build 11(2):93–107. https://doi.org/10.1002/tal.192

    Article  Google Scholar 

  4. Miranda E, Taghavi S (2005) Approximate floor acceleration demands in multistory buildings. I: formulation. J Struct Eng 131(2):203–211. https://doi.org/10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  5. Meftah SA, Tounsi A, El Abbas AB (2007) A simplified approach for seismic calculation of a tall building braced by shear walls and thin-walled open section structures. Eng Struct 29(10):2576–2585. https://doi.org/10.1016/j.engstruct.2006.12.014

    Article  Google Scholar 

  6. Lu X, Lu X, Sezen H, Ye L (2014) Development of a simplified model and seismic energy dissipation in a super-tall building. Eng Struct 67:109–122. https://doi.org/10.1016/j.engstruct.2014.02.017

    Article  Google Scholar 

  7. Greco A, Fiore I, Occhipinti G, Caddemi S, Spina D, Calió I (2020) An equivalent non-uniform beam-like model for dynamic analysis of multi-storey irregular buildings. Appl Sci. https://doi.org/10.3390/app10093212

    Article  Google Scholar 

  8. Lu X, Guan H (2017) Earthquake disaster simulation of civil infrastructures, one. Springer, Singapore

    Book  Google Scholar 

  9. Benner P (2006) Numerical linear algebra for model reduction in control and simulation. GAMM-Mitteilungen 29(2):275–296. https://doi.org/10.1002/gamm.201490034

    Article  MathSciNet  MATH  Google Scholar 

  10. Koutsovasilis P, Beitelschmidt M (2008) Comparison of model reduction techniques for large mechanical systems: a study on an elastic rod. Multibody Syst Dyn 20(2):111–128

    Article  MathSciNet  MATH  Google Scholar 

  11. Nowakowski C, Kürschner P, Eberhard P, Benner P (2013) Model reduction of an elastic crankshaft for elastic multibody simulations. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 93(4):198–216. https://doi.org/10.1002/zamm.201200054

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuang WC, Spence SMJ (2019) Rapid uncertainty quantification for non-linear and stochastic wind excited structures: a metamodeling approach. Meccanica 54(9):1327–1338. https://doi.org/10.1007/s11012-019-00958-9

    Article  MathSciNet  Google Scholar 

  13. Wang J, Fang M, Li H (2020) An adaptive model order reduction method based on the damage evolution for nonlinear seismic analysis. Adv Civil Eng. https://doi.org/10.1155/2020/8865255

    Article  Google Scholar 

  14. Fang M, Wang J, Li H (2021) An adaptive model order reduction method for nonlinear seismic analysis of civil structures based on the elastic-plastic states. Int J Numer Methods Eng 122(15):3985–4006. https://doi.org/10.1002/nme.6689

    Article  MathSciNet  Google Scholar 

  15. Mirsky L (1960) Symmetric gauge functions and unitarily invariant norms. QJ Math Oxf II Ser 11:50–59. https://doi.org/10.1093/qmath/11.1.50

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmidt E (1907) Zur Theorie der linearen und nichtlinearen Integralgleichungen- I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Mathematische Annalen 63(4):433–476. https://doi.org/10.1007/BF01449770

    Article  MathSciNet  MATH  Google Scholar 

  17. Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218. https://doi.org/10.1007/bf02288367

    Article  MATH  Google Scholar 

  18. Arnoldi WE (1951) The principle of minimized iteration in the solution of the matrix eigenvalue problem. Q Appl Math 9(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  19. Freund RW (1999) Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. In: Proceedings of the 36th annual ACM/IEEE design automation conference, DAC ’99. New York, NY, USA: ACM, p 195–200. Available from: http://doi.acm.org/10.1145/309847.309913

  20. Feldmann P, Freund RW (1995) Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans Comput Aided Des Integr Circuits Syst 14:639–649

    Article  Google Scholar 

  21. Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255–282

    Article  MathSciNet  Google Scholar 

  22. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  23. Karhunen KK (1947) Über Lineare Methoden in der Wahrscheinlichkeitsrechnung. vol. 37 of Annals of Academic Science Fennicae, Series A1 Mathematics and Physics. Universitat Helsinki

  24. Kosambi D (1943) Statistics in function space. J Indian Math Soc 7:76–88

    MathSciNet  MATH  Google Scholar 

  25. Loève M (1948) Fonctions Aléatoires du Second Ordre. Gauthier-Villars, Processus stochastiques et mouvement Brownien. Paris

  26. Obukhov MA (1954) Statistical description of continuous fields. Trans Geophys Int Acad Nauk USSR 24:3–42

    MathSciNet  Google Scholar 

  27. Pougachev VS (1953) General theory of the correlations of random functions. Izvestiya Akademii Nauk USSR 17:1401–1402

    MathSciNet  Google Scholar 

  28. Bamer F, Bucher C (2012) Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations. Acta Mechanica 223(12):2549–2563. https://doi.org/10.1007/s00707-012-0726-9

    Article  MATH  Google Scholar 

  29. Bamer F, Amiri AK, Bucher C (2017) A new model order reduction strategy adapted to nonlinear problems in earthquake engineering. Earthq Eng Struct Dyn 46(4):537–559. https://doi.org/10.1002/eqe.2802

    Article  Google Scholar 

  30. Li B, Chuang WC, Spence SMJ (2021) Response estimation of multi-degree-of-freedom nonlinear stochastic structural systems through metamodeling. J Eng Mech 147(11):04021082. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001963

    Article  Google Scholar 

  31. Wang H, Wu T (2020) Knowledge-enhanced deep learning for wind-induced nonlinear structural dynamic analysis. J Struct Eng 146(11):04020235. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002802

    Article  Google Scholar 

  32. Zhang R, Liu Y, Sun H (2020) Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. Comput Methods Appl Mech Eng 369:113226. https://doi.org/10.1016/j.cma.2020.113226

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang R, Liu Y, Sun H (2020) Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling. Eng Struct 215:110704. https://doi.org/10.1016/j.engstruct.2020.110704

    Article  Google Scholar 

  34. Torky AA, Ohno S (2021) Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings. Comput Struct 252:106570. https://doi.org/10.1016/j.compstruc.2021.106570

    Article  Google Scholar 

  35. Im S, Lee J, Cho M (2021) Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition. Comput Methods Appl Mech Eng 385:114030. https://doi.org/10.1016/j.cma.2021.114030

    Article  MathSciNet  MATH  Google Scholar 

  36. Bamer F, Koeppe A, Markert B (2017) An efficient Monte Carlo simulation strategy based on model order reduction and artificial neural networks. PAMM 17(1):287–288. https://doi.org/10.1002/pamm.201710113

    Article  Google Scholar 

  37. Wan ZY, Vlachas P, Koumoutsakos P, Sapsis T (2018) Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PLoS ONE 05(13):1–22. https://doi.org/10.1371/journal.pone.0197704

    Article  Google Scholar 

  38. San O, Maulik R, Ahmed M (2019) An artificial neural network framework for reduced order modeling of transient flows. Commun Nonlinear Sci Numer Simul 77:271–287. https://doi.org/10.1016/j.cnsns.2019.04.025

    Article  MathSciNet  MATH  Google Scholar 

  39. Lui HFS, Wolf WR (2019) Construction of reduced-order models for fluid flows using deep feedforward neural networks. J Fluid Mech 872:963–994. https://doi.org/10.1017/jfm.2019.358

    Article  MathSciNet  MATH  Google Scholar 

  40. Li B, Spence SMJ (2022) Metamodeling through deep learning of high-dimensional dynamic nonlinear systems driven by general stochastic excitation. J Struct Eng 148(11):04022186. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003499

    Article  Google Scholar 

  41. Cao B, Freitag S, Meschke G (2016) A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling. Adv Model Simul Eng Sci 3(1):1–22

    Article  Google Scholar 

  42. Freitag S, Cao BT, Ninić J, Meschke G (2018) Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes. Comput Struct 207:258–273. https://doi.org/10.1016/j.compstruc.2017.03.020. ((CIVIL-COMP 2017))

    Article  Google Scholar 

  43. Brambila de Salles H, Fadel Miguel LF, Lenzi MS, Holdorf Lopez R (2021) A Padé-based fast frequency sweep approach for irregular large-scale building models subjected to seismic excitation. Structures 34:4376–4388. https://doi.org/10.1016/j.istruc.2021.10.008

    Article  Google Scholar 

  44. Pillage LT, Rohrer RA (1990) Asymptotic waveform evaluation for timing analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 9(4):352–366

    Article  Google Scholar 

  45. Bai Z, Su Y (2005) SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J Matrix Anal Appl 26(3):640–659

    Article  MathSciNet  MATH  Google Scholar 

  46. Antoulas AC, Sorensen DC (2001) Approximation of large-scale dynamical systems: An overview. Appl Math Comput Sci 11(5):1093–1122

    MathSciNet  MATH  Google Scholar 

  47. Salimbahrami B, Lohmann B (2006) Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Its Appl 415(2–3):385–405

    Article  MathSciNet  MATH  Google Scholar 

  48. Teng C (2004) Model reduction of second-order linear dynamical systems [PhD Thesis]. Rice University;

  49. Bai Z, Su Y (2005) Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM J Sci Comput 26(5):1692–1709

    Article  MathSciNet  MATH  Google Scholar 

  50. Chiprout E, Nakhla MS (1994) Asymptotic waveform evaluation: and moment matching for interconnect analysis. The springer international series in engineering and computer science series. Kluwer Academic. Available from: https://books.google.com.br/books?id=zW2ycYaB2jQC

  51. Grimme EJ (1997) Krylov projection methods for model reduction [PhD Thesis]. University of Illinois at Urbana-Champaign

  52. Gugercin S, Antoulas A, Beattie C (2008) \(\cal{H} _2\) model reduction for large-scale linear dynamical systems. SIAM J Matrix Anal Appl 30(2):609–638

    Article  MathSciNet  MATH  Google Scholar 

  53. Tuck-Lee JP, Pinsky PM (2008) Adaptive frequency windowing for multifrequency solutions in structural acoustics based on the matrix Padé-via-Lanczos algorithm. Int J Numer Methods Eng 73:728–746

    Article  MATH  Google Scholar 

  54. Lenzi MS, Lefteriu S, Beriot H, Desmet W (2013) A fast frequency sweep approach using Padé approximations for solving Helmholtz finite element models. J Sound Vib 332(8):1897–1917

    Article  Google Scholar 

  55. Lefteriu S, Lenzi MS, Beriot H, Tournour M, Desmet W (2016) Fast frequency sweep method for indirect boundary element models arising in acoustics. Eng Anal Bound Elem 69:32–45

    Article  MathSciNet  MATH  Google Scholar 

  56. Bertero VV, Kamil H (1975) Nonlinear seismic design of multistory frames. Can J Civil Eng 2(4):494–516

    Article  Google Scholar 

  57. AISC.: Manual of Steel Construction

  58. Kanai K (1957) Semi-empirical formula for the seismic characteristics of the ground motion. Bull Earthq Res Inst 35(2):308–325

    Google Scholar 

  59. Tajimi H (1960) A statistical method of determining the maximum response of a building structure during an earthquake. In: Proceedings of the 2nd world conference on earthquake engineering, pp 781–797

  60. De Domenico D, Ricciardi G, Takewaki I (2019) Design strategies of viscous dampers for seismic protection of building structures: a review. Soil Dyn Earthq Eng 118:144–165

    Article  Google Scholar 

  61. Sorace S, Terenzi G (2009) Fluid viscous damper-based seismic retrofit strategies of steel structures: General concepts and design applications. Adv Steel Constr 5(3):325–342

    Google Scholar 

  62. Weng DG, Zhang C, Lu XL, Zeng S, Zhang SM (2012) A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers. Struct Eng Mech 44(5):611–631

    Article  Google Scholar 

  63. Lavan O (2015) Optimal design of viscous dampers and their supporting members for the seismic retrofitting of 3D irregular frame structures. J Struct Eng (U S) 141(11):04015026

    Article  Google Scholar 

  64. Sorace S, Terenzi G (2017) Existing prefab R/C industrial buildings: seismic assessment and supplemental damping-based retrofit. Soil Dyn Earthq Eng 94:193–203

    Article  Google Scholar 

  65. Gioiella L, Tubaldi E, Gara F, Dezi L, Dall’Asta A (2018) Stochastic seismic analysis and comparison of alternative external dissipative systems. Shock Vib. https://doi.org/10.1155/2018/5403737

    Article  Google Scholar 

  66. Gioiella L, Tubaldi E, Gara F, Dezi L, Dall’Asta A (2018) Modal properties and seismic behaviour of buildings equipped with external dissipative pinned rocking braced frames. Eng Struct 172:807–819. https://doi.org/10.1016/j.engstruct.2018.06.043

    Article  Google Scholar 

  67. Miguel LFF, Miguel LFF, Lopez RH (2014) Robust design optimization of friction dampers for structural response control. Struct Control Health Monitor 21(9):1240–1251

    Article  Google Scholar 

  68. Miguel LFF, Fadel Miguel LF, Lopez RH (2015) A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optim Eng 16(3):633–661

    Article  MathSciNet  MATH  Google Scholar 

  69. Miguel LFF, Miguel LFF, Lopez RH (2016) Failure probability minimization of buildings through passive friction dampers. Struct Des Tall Spec Build 25(17):869–885

    Article  Google Scholar 

  70. Miguel LFF, Miguel LFF, Lopez RH (2016) Simultaneous optimization of force and placement of friction dampers under seismic loading. Eng Optim 48(4):582–602

    Article  MathSciNet  Google Scholar 

  71. Miguel LFF, Miguel LFF, Lopez RH (2018) Methodology for the simultaneous optimization of location and parameters of friction dampers in the frequency domain. Eng Optim 50(12):2108–2122

    MathSciNet  MATH  Google Scholar 

  72. Joshi AS, Jangid RS (1997) Optimum parameters of multiple tuned mass dampers for base-excited damped systems. J Sound Vib 202(5):657–667

    Article  Google Scholar 

  73. Hadi MNS, Arfiadi Y (1998) Optimum design of absorber for MDOF structures. J Struct Eng 124(11):1272–1280

    Article  Google Scholar 

  74. Hoang N, Warnitchai P (2005) Design of multiple tuned mass dampers by using a numerical optimizer. Earthq Eng Struct Dyn 34(2):125–144

    Article  Google Scholar 

  75. Lee CL, Chen YT, Chung LL, Wang YP (2006) Optimal design theories and applications of tuned mass dampers. Eng Struct 28(1):43–53

    Article  Google Scholar 

  76. Taflanidis AA, Beck JL, Angelides DC (2007) Robust reliability-based design of liquid column mass dampers under earthquake excitation using an analytical reliability approximation. Eng Struct 29(12):3525–3537

    Article  Google Scholar 

  77. Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31(3):715–728

    Article  Google Scholar 

  78. Marano GC, Greco R, Sgobba S (2010) A comparison between different robust optimum design approaches: application to tuned mass dampers. Probab Eng Mech 25(1):108–118

    Article  Google Scholar 

  79. Mohebbi M, Shakeri K, Ghanbarpour Y, Majzoub H (2013) Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. J Vib Control 19(4):605–625

    Article  Google Scholar 

  80. Lopez RH, Fadel Miguel LF, Beck AT (2014) Tuned mass dampers for passive control of structures under earthquake excitations encyclopedia of earthquake engineering. Springer, Berlin, pp 1–12

    Google Scholar 

  81. Fadel Miguel LF, Lopez RH, Miguel LFF, Torii AJ (2016) A novel approach to the optimum design of MTMDs under seismic excitations. Struct Control Health Monitor 23(11):1290–1313

    Article  Google Scholar 

  82. Chung LL, Wu LY, Yang CSW, Lien KH, Lin MC, Huang HH (2013) Optimal design formulas for viscous tuned mass dampers in wind-excited structures. Struct Control Health Monitor 20(3):320–336

    Article  Google Scholar 

  83. Miguel LFF, Lopez RH, Torii AJ, Miguel LFF, Beck AT (2016) Robust design optimization of TMDs in vehicle-bridge coupled vibration problems. Eng Struct 126:703–711. https://doi.org/10.1016/j.engstruct.2016.08.033

    Article  Google Scholar 

  84. Nascentes F, Lopez RH, de Cursi JES, Sampaio R, Miguel LFF (2019) An efficient global optimization approach for reliability maximization of friction-tuned mass damper-controlled structures. Shock Vib. https://doi.org/10.1155/2018/7414817

    Article  Google Scholar 

  85. Vellar LS, Ontiveros-Pèrez SP, Miguel LFF, Fadel Miguel LF (2019) Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation. Shock Vib. https://doi.org/10.1155/2019/9273714

    Article  Google Scholar 

  86. Fadel Miguel LF, Lopez RH, Torii AJ, Beck AT (2022) Reliability-based optimization of multiple nonlinear PTMDs for seismic retrofitting of buildings. Structures 45:415–426

    Article  Google Scholar 

  87. Fadel Miguel LF, Lopez RH, Torii AJ, Beck AT (2022) Reliability-based optimization of multiple Folded Pendulum TMDs through Efficient Global Optimization. Eng Struct 266:114524. https://doi.org/10.1016/j.engstruct.2022.114524

    Article  Google Scholar 

  88. Wani ZR, Tantray M, Noroozinejad Farsangi E, Nikitas N, Noori M, Samali B et al (2022) A critical review on control strategies for structural vibration control. Ann Rev Control 54:103–124. https://doi.org/10.1016/j.arcontrol.2022.09.002

    Article  MathSciNet  Google Scholar 

  89. Katebi J, Shoaei-parchin M, Shariati M, Trung NT, Khorami M (2020) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36(4):1539–1558. https://doi.org/10.1007/s00366-019-00780-7

    Article  Google Scholar 

  90. Xie Y, Sichani ME, Padgett JE, DesRoches R (2020) The promise of implementing machine learning in earthquake engineering: a state-of-the-art review. Earthq Spectra 36(4):1769–1801. https://doi.org/10.1177/8755293020919419

    Article  Google Scholar 

  91. Mantovani GZ(2017) Otimização de múltiplos atenuadores dinâmicos sintonizados com atrito sob excitação sísmica (in portuguese) [M.sc. Thesis]. Federal University of Santa Catarina (UFSC). Florianópolis, Brazil

  92. Li Z, Kotronis P, Wu H (2017) Simplified approaches for Arias Intensity correction of synthetic accelerograms. Bull Earthq Eng 15(10):4067–4087. https://doi.org/10.1007/s10518-017-0126-6

    Article  Google Scholar 

  93. ASCE (2016) Minimum design loads and associated criteria for buildings and other structures (ASCE/SEI 07-16). Reston, Virginia: ASCE

Download references

Acknowledgements

This study was financed in part by the Coordination of Superior Level Staff Improvement (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) - Brasil (CAPES) - Finance Code 001. The authors also gratefully acknowledge the financial support of CNPq (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Souza Lenzi.

Additional information

Technical Editor: Ehsan Noroozinejad Farsangi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenzi, M.S., Fadel Miguel, L.F., Lopez, R.H. et al. Second-order Krylov subspaces for model order reduction of buildings subjected to seismic excitation. J Braz. Soc. Mech. Sci. Eng. 45, 110 (2023). https://doi.org/10.1007/s40430-023-04043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04043-x

Keywords

Navigation