Skip to main content
Log in

Vision-based control for trajectory tracking of four-bar linkage

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

It is well-known that mechanical sensors suffer failure in hostile environments. Therefore, in such applications, vision control is a suitable solution. In this paper, we propose a new approach for design and implementation of the control system for the speed of the coupler point in a four-bar linkage. To measure the coupler point position a computational vision system is implemented; the vision system sends the controller the precise position of the desired point for a wide range of crank rotational speeds. A proportional integral derivative control system is designed and implemented in a microprocessor. Stability analysis for the controlled system is performed via the Lyapunov stability theory. Performance of the system is validated experimentally in a prototype of a planar mechanism obtaining an average square error of measurement less than 0.03% and regulation of operating point less than 1% for different speed references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matekar SB, Gogate G (2012) Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function. Mech Mach Theory 52:158–179

    Article  Google Scholar 

  2. Schaefer S, Kramer SN (1979) Selective precision synthesis of planar mechanisms satisfying position and velocity constraints. Mech Mach Theory 14(3):161–170

    Article  Google Scholar 

  3. Holte JE, Chase TR, Erdman AG (1999) Approximate velocities in mixed exact-approximate position synthesis of planar mechanisms. ASME J Mech Des 123(3):388–394

    Article  Google Scholar 

  4. Robson NP, McCarthy JM (2005) The synthesis of planar 4R linkages with three task positions and two specified velocities. In: 29th mechanisms and robotics conference, parts A and B, Engineering technical conference, 2005, vol 7

  5. Eqra N, Abiri AH, Vatankhah R (2018) Optimal synthesis of a four-bar linkage for path generation using adaptive PSO. J Braz Soc Mech Sci Eng 40(9):1–11

    Article  Google Scholar 

  6. De-Juan A, Sancibrian R, García P, Viadero F, Iglesias M, Fernández A (2012) Kinematic synthesis for linkages with velocity targets. J Adv Mech Des Syst Manuf 6(4):472–483

    Article  Google Scholar 

  7. Russel K, Shen Q (2012) Revisiting planar four-bar precision synthesis with finite and multiply-separated positions. J Adv Mech Des Syst Manuf 6(7):1273–1280

    Article  Google Scholar 

  8. Chang CF (2001) Synthesis of adjustable four-bar mechanisms generating circular arcs with specified tangential velocities. Mech Mach Theory 36(3):387–395

    Article  Google Scholar 

  9. Norton R (2011) Design of machinery with student resource DVD, 5th edn. McGraw-Hill Education, New York

    Google Scholar 

  10. Gogate GR (2016) Inverse kinematic and dynamic analysis of planar path generating adjustable mechanism. Mech Mach Theory 102:103–122

    Article  Google Scholar 

  11. Lin W, Tsai Y, Hsiao K (2017) Optimum variable input speed for kinematic performance of Geneva mechanisms using teaching-learning-based optimization algorithm. Proc Inst Mech Eng C J Mech Eng Sci 231(10):1871–1883

    Article  Google Scholar 

  12. Yang J-H, Hsu M-H, Yan H-S (2016) Kinematic and dynamic characteristics design of a variable-speed machine with slider-crank and screw mechanisms. J Mech Robotics 8:014502

    Article  Google Scholar 

  13. Yildiz A, Kopmaz O, Cetin ST (2015) Dynamic modelling and analysis of a four-bar mechanism coupled with a CVT for obtaining variable input speeds. J Mech Sci Technol 29(3):1001–1006

    Article  Google Scholar 

  14. Soong RC (2009) A design method for four-bar mechanisms with variable speeds and length-adjustable driving links. J Adv Mech Des Syst Manuf 3(4):312–323

    Article  Google Scholar 

  15. Tao J, Sadler JP (1995) Constant speed control of a motor driven mechanism system. Mech Mach Theory 30(5):737–748

    Article  Google Scholar 

  16. Lin MC, Chen JS (1996) Experiments toward MRAC design for linkage system. Mechatronics 6(8):933–953

    Article  Google Scholar 

  17. Tokuz Dulger LC, Uyan S (1997) Modelling, simulation and control of a four-bar mechanism with a brushless servo motor. Mechatronics 7(4):369–383

    Article  Google Scholar 

  18. Yan HS, Chen WR (2000) On the output motion characteristics of variable input speed servo-controlled slider-crank mechanisms. Mech Mach Theory 35(4):541–561

    Article  Google Scholar 

  19. Li Q, Tso SK, Guo LS, Zhang WJ (2000) Improving motion tracking of servomotor-driven closed loop mechanisms using mass-redistribution. Mech Mach Theory 35(7):1033–1045

    Article  Google Scholar 

  20. Gündoğdu Ö, Erentürk K (2005) Fuzzy control of a dc motor driven four-bar mechanism. Mechatronics 15(4):423–438

    Article  Google Scholar 

  21. Zhang Y, Feng C, Li B (2006) PID control of nonlinear motor-mechanism coupling system using artificial neural network. In: Advances in neural networks, lecture notes in computer science, vol 3972. Springer, Berlin

  22. Yan HS, Yan GJ (2009) Integrated control and mechanism design for the variable input-speed servo four-bar linkages. Mechatronics 19:274–285

    Article  Google Scholar 

  23. Incerti G (2012) On the dynamic behaviour of a four-bar linkage driven by a velocity controlled DC motor. World Acad Sci Eng Technol Int J Mech Mechatron Eng 6(9):1895–1901

    Google Scholar 

  24. Koca GO, Akpolat ZH, Ozdemir M (2014) Development of robust fuzzy control methods and their applications to a mechanical system. Turkish J Sci Technol 9(1):47–56

    Google Scholar 

  25. Lungu R, Sepcu L, Lungu M (2015) Four-bar mechanism’s proportional-derivative and neural adaptive control for the thorax of the micromechanical flying insects. J Dyn Syst Meas Contr 137(5):051005–0510017

    Article  Google Scholar 

  26. Al-Jarrah A, Salah M, Banihani S, Al-Widyan K, Ahmad A (2015) Applications of various control schemes on a four-bar linkage mechanism driven by a geared DC motor. WSEAS Trans Syst Control 10:584–597

    Google Scholar 

  27. Peón-Escalante R, Flota-Bañuelos M, Ricalde LJ, Acosta C, Solís Perales G (2016) On the coupler point velocity control of variable input speed servo-controlled four-bar mechanism. Adv Mech Eng 8(11):1–9

    Article  Google Scholar 

  28. Çakar O, Tanyıldızı AK (2018) Application of moving sliding mode control for a DC motor driven four-bar mechanism. Adv Mech Eng 10(3):1–13

    Article  Google Scholar 

  29. Salah M, Al-Jarrah A, Tatlicioglu E, Banihani S (2019) Robust backstepping control for a four-bar linkage mechanism driven by a DC Motor. J Intell Rob Syst 94(2):327–338

    Article  Google Scholar 

  30. Bellakehal S, Andreff N, Mezouar Y, Tadjine M (2011) Vision/force control of parallel robots. Mech Mach Theory 46(10):1376–1395

    Article  Google Scholar 

  31. Kelly R (1996) Robust asymptotically stable visual servoing of planar robots. IEEE Trans Robot Autom 12(5):759–766

    Article  Google Scholar 

  32. Acharyya SK, Mandal M (2009) Performance of EAs for four-bar linkage synthesis. Mech Mach Theory 44(9):1784–1794

    Article  Google Scholar 

  33. Corke P (2013) Robotics, vision and control: fundamental algorithms in Matlab, 1st edn. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flota-Bañuelos.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flota-Bañuelos, M., Peón-Escalante, R., Ricalde, L.J. et al. Vision-based control for trajectory tracking of four-bar linkage. J Braz. Soc. Mech. Sci. Eng. 43, 324 (2021). https://doi.org/10.1007/s40430-021-03043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03043-z

Keywords

Navigation