Skip to main content
Log in

Micromixer structure design based on Koch fractal principle and baffle distribution on the lower surface

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the effect of the baffle on the mixing efficiency is studied when the baffle is distributed on the lower surface of the microchannel. The mixing efficiency of the micromixer was analyzed by numerical simulation. To study the change of mixing efficiency of micromixer, we changed the fractal number of baffles, height of baffles, spacing of baffles, angle of baffles, the number of baffles. Through analysis and comparison, we finally chose a micromixer with fractal number of 2, baffle height of 0.2 mm, baffle spacing of 0.25 mm, baffle angle of 45° and baffle number of 15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Han W, Chen X, Hu Z et al (2018) Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel. J Micro/Nanolithogr MEMS MOEMS 17(2):025502

    Article  Google Scholar 

  2. Shi YZ, Xiong S, Zhang Y et al (2018) Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9(1):815

    Article  Google Scholar 

  3. Rahimi M, Aghel B, Alitabar M et al (2014) Optimization of biodiesel production from soybean oil in a microreactor. Energy Convers Manag 79:599–605

    Article  Google Scholar 

  4. Tian Y, Chen X, Zhang S (2019) Numerical study on bilateral Koch fractal baffles micromixer. Microgravit Sci Technol 31(6):833–843

    Article  Google Scholar 

  5. Babar H, Ali HM (2019) Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J Mol Liq 281:598–633

    Article  Google Scholar 

  6. Zhao S, Chen C, Zhu P et al (2019) Passive micromixer platform for size-and shape-controllable preparation of ultrafine HNS. Ind Eng Chem Res 58(36):16709–16718

    Article  Google Scholar 

  7. Montessori A, Lauricella M, Tirelli N et al (2019) Mesoscale modelling of near-contact interactions for complex flowing interfaces. J Fluid Mech 872:327–347

    Article  MathSciNet  Google Scholar 

  8. Montessori A, Lauricella M, Tiribocchi A et al (2019) Modeling pattern formation in soft flowing crystals. Phys Rev Fluids 4(7):072201

    Article  Google Scholar 

  9. Montessori A, Lauricella M, Succi S (2019) Mesoscale modelling of soft flowing crystals. Philos Trans R Soc A 377(2142):20180149

    Article  Google Scholar 

  10. Chen X, Shen J, Zhou M (2016) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001

    Article  Google Scholar 

  11. Shi Y, Xiong S, Chin LK et al (2018) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773

    Article  Google Scholar 

  12. Jing D, Song S, Pan Y et al (2018) Size dependences of hydraulic resistance and heat transfer of fluid flow in elliptical microchannel heat sinks with boundary slip. Int J Heat Mass Transf 119:647–653

    Article  Google Scholar 

  13. Jing D, Song J (2019) Comparison on the hydraulic and thermal performances of two tree-like channel networks with different size constraints. Int J Heat Mass Transf 130:1070–1074

    Article  Google Scholar 

  14. Gidde RR, Pawar PM, Ronge BP et al (2018) Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers. Microsyst Technol 24(6):2599–2610

    Article  Google Scholar 

  15. Chen X, Tian Y (2020) Passive micromixer with baffles distributed on both sides of microchannels based on the Koch fractal principle. J Chem Technol Biotechnol 95(3):806–812

    Article  Google Scholar 

  16. Chen X, Tian Y, Zhang S (2020) Co2 laser ablation microchannel based on Koch fractal principle. Surf Rev Lett 27(05):1950141

    Article  Google Scholar 

  17. Chen X, Liu S, Chen Y, et al (2019) A review on species mixing in droplets using passive and active micromixers. Int J Environ Anal Chem 1–11

  18. Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414

    Article  Google Scholar 

  19. Gidde RR, Pawar PM, Ronge BP et al (2019) Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements. Microsyst Technol 25(3):1017–1030

    Article  Google Scholar 

  20. Bagherabadi KM, Sani M, Saidi MS (2019) Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio. Chem Eng Process-Process Intens 2019:107560

    Article  Google Scholar 

  21. Kaneko K, Okano T, Hayakawa T, et al (2019) A pumpless mixer for efficient capturing of small particles utilizing vibration-induced flow. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2019: 406–408

  22. Chen X, Li T, Zeng H, Zengliang Hu, Baoding Fu (2016) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140

    Article  Google Scholar 

  23. Yuzhi S, Sha X, Lip KC et al (2018) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773

    Article  Google Scholar 

  24. Shi X, Wang L, Huang S et al (2019) A novel passive micromixer with array of Koch fractal obstacles in microchannel. J Dispers Sci Technol 2019:1–12

    Google Scholar 

  25. Zhang S, Chen X, Wu Z et al (2019) Numerical study on stagger Koch fractal baffles micromixer. Int J Heat Mass Transf 133:1065–1073

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Young Taishan Scholars Program of Shandong Province of China(tsqn2020), Shandong Provincial Natural Science Foundation (ZR2021JQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Chen, X. Micromixer structure design based on Koch fractal principle and baffle distribution on the lower surface. J Braz. Soc. Mech. Sci. Eng. 43, 177 (2021). https://doi.org/10.1007/s40430-021-02905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02905-w

Keywords

Navigation