Skip to main content
Log in

Thermal and entropy analysis of a manifold microchannel heat sink operating on CuO–water nanofluid

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An increase in area and disturbance of flow by introducing ribs in a microchannel system has proven to be effective in thermal management. On the other hand, nanofluid as a new coolant could also provide a much-needed performance boost. The performance of a manifold microchannel heat sink utilising nanofluid as the coolant and ribs for flow mixing has been investigated. The study is conducted with CuO–water nanofluid, Reynolds number of 100–400 and CuO nanoparticle volume fraction up to 4%. The results show that CuO–water nanofluid produced a higher thermal performance at higher concentration and Reynolds number with a corresponding increment in pressure drop. When compared to water, the Nusselt number increased from 4.4 to 23.67% at Reynolds number of 100 and CuO concentration of 4%. The addition of ribs on the sidewall of the manifold microchannel only showed a slight enhancement of up to 6.8% in the Nusselt number. Similarly, the thermal enhancement factor ranging from 1.03 to 1.07 is observed for the ribbed manifold microchannels, indicating better overall performance when compared to the microchannel without ribs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C P :

Specific heat capacity (m3K/W)

D :

Diameter (nm)

d p :

Nanoparticle diameter (nm)

\(\lambda\) :

Thermal conductivity (W/mK)

H :

Height of channel (nm)

W :

Width of channel (nm)

Nu:

Nusselt number (–)

\({\text{PP}}\) :

Pumping power (W)

\(\dot{K}\) :

Flow rate (kg/s)

\(q^{\prime \prime }\) :

Heat flux (W/cm2)

Re:

Reynolds number (–)

\(\dot{S}\) :

Total entropy generation rate (W/K)

T :

Temperature (K)

\({\varvec{V}}\)(u,v,w):

x, y, and z component of velocity (m/s)

X :

x-axis path (m)

Y :

y-axis path (m)

Z :

z-axis path (m)

\(p\) :

Pressure (Pa)

A :

Area [(nm)2]

\(\Delta p\) :

Pressure drop (Pa)

PEC:

Performance evaluation criteria (–)

\(\varphi\) :

Particle volume fraction (–)

\(\rho\) :

Density (kg/m3)

\(\mu\) :

Viscosity (cP)

K b :

Boltzmann constant (–)

\(\theta\) :

Temperature uniformity (–)

\(\eta\) :

Thermal enhancement factor (–)

c:

Channel

eff:

Effective

f:

Base fluid

h:

Hydraulic

nf:

Nanofluid

o:

Smooth channel

p:

Nanoparticle

r:

Ribbed channel

References

  1. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Dev Lett EDL 2:126–129. https://doi.org/10.1109/EDL.1981.25367

    Article  Google Scholar 

  2. Mohammed HA, Gunnasegaran P, Shuaib NH (2010) Heat transfer in rectangular microchannels heat sink using nanofluids. Int Commun Heat Mass Transf 37:1496–1503. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.020

    Article  Google Scholar 

  3. Ebrahim S, Ranjbar AA, Hosseini MJ (2017) Experimental and numerical investigation of circular minichannel heat sinks with various hydraulic diameter for electronic cooling application. Microelectron Reliab 73:97–105. https://doi.org/10.1016/j.microrel.2017.04.028

    Article  Google Scholar 

  4. Manay E, Feyza E, Sahin B (2018) Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys 9:615–624. https://doi.org/10.1016/j.rinp.2018.03.013

    Article  Google Scholar 

  5. Sheikhalipour T, Abbassi A (2018) Numerical analysis of nanofluid flow inside a trapezoidal microchannel using different approaches. Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.04.010

    Article  Google Scholar 

  6. Ghahremannezhad A, Vafai K (2018) Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates. Int J Heat Mass Transf 122:1313–1326. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.024

    Article  Google Scholar 

  7. Gong L, Li Y, Bai Z, Xu M (2018) Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.03.065

    Article  Google Scholar 

  8. Ghahremannezhad A, Xu H, Alhuyi M, Hossein M, Vafai K (2019) Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks. Int J Heat Mass Transf 131:52–63. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.040

    Article  Google Scholar 

  9. Arie MA, Shooshtari AH, Dessiatoun SV, Al-Hajri E, Ohadi MM (2015) Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger. Int J Heat Mass Transf 81:478–489. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.022

    Article  Google Scholar 

  10. Hajmohammadi MR, Toghraei I (2018) Optimal design and thermal performance improvement of a double-layered microchannel heat sink by introducing Al2O3 nano-particles into the water. Phys A 505:328–344. https://doi.org/10.1016/j.physa.2018.03.040

    Article  Google Scholar 

  11. Xu JL, Gan YH, Zhang DC, Li XH (2005) Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. Int J Heat Mass Transf 48:1662–1674. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.008

    Article  Google Scholar 

  12. Dewan A, Srivastava P (2015) A review of heat transfer enhancement through flow disruption in a microchannel. J Therm Sci 24:203–214. https://doi.org/10.1007/s11630-015-0775-1

    Article  Google Scholar 

  13. Harpole GM, Eninger JE (1991) Micro-channel heat exchanger optimization. In: 1991 proceedings, seventh IEEE semiconductor thermal measurement and management symposium. IEEE, pp 59–63

  14. Boteler L, Jankowski N, McCluskey P, Morgan B (2012) Numerical investigation and sensitivity analysis of manifold microchannel coolers. Int J Heat Mass Transf 55:7698–7708. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.073

    Article  Google Scholar 

  15. Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, Garimella SV (2018) A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int J Heat Mass Transf 117:319–330. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.015

    Article  Google Scholar 

  16. Mandel R, Shooshtari A, Ohadi M (2018) A “2.5-D” modeling approach for single-phase flow and heat transfer in manifold microchannels. Int J Heat Mass Transf 126:317–330. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.145

    Article  Google Scholar 

  17. Sharma CS, Zimmermann S, Tiwari MK, Michel B, Poulikakos D (2012) Optimal thermal operation of liquid-cooled electronic chips. Int J Heat Mass Transf 55:1957–1969. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.052

    Article  Google Scholar 

  18. Ali MA, Khan TS, Al Hajri E (2016) Numerical simulation of manifold microchannel heat exchanger. In: Proceedings of the ASME 2016 international mechanical engineering congress and exposition (IMECE2016-66960), pp 1–10

  19. Rimbault B, Tam C, Galanis N (2014) Experimental investigation of CuO e water nano fl uid fl ow and heat transfer inside a microchannel heat sink. Int J Therm Sci 84:275–292. https://doi.org/10.1016/j.ijthermalsci.2014.05.025

    Article  Google Scholar 

  20. Shi X, Li S, Wei Y, Gao J (2018) Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel. Int Commun Heat Mass Transf 90:111–120. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.007

    Article  Google Scholar 

  21. Alfaryjat AA, Mohammed HA, Adam NM, Stanciu D, Dobrovicescu A (2018) Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink. Therm Sci Eng Prog 5:252–262. https://doi.org/10.1016/j.tsep.2017.12.003

    Article  Google Scholar 

  22. Yue Y, Mohammadian SK, Zhang Y (2015) Analysis of performances of a manifold microchannel heat sink with nano fluids. Int J Therm Sci 89:305–313. https://doi.org/10.1016/j.ijthermalsci.2014.11.016

    Article  Google Scholar 

  23. Adewumi OO, Bello-Ochende T, Meyer JP (2017) Numerical investigation into the thermal performance of single microchannels with varying axial length and different shapes of micro pin-numerical investigation into the thermal performance of single microchannels with varying axial length and different. Heat Transf Eng. https://doi.org/10.1080/01457632.2016.1239927

    Article  Google Scholar 

  24. Wang R, Wang J, Lijin B, Zhu Z (2018) Parameterization investigation on the microchannel heat sink with slant rectangular ribs by numerical simulation. Appl Therm Eng 133:428–438. https://doi.org/10.1016/j.applthermaleng.2018.01.021

    Article  Google Scholar 

  25. Chai L, Wang L (2018) Thermal-hydraulic performance of interrupted microchannel heat sinks with di ff erent rib geometries in transverse microchambers. Int J Therm Sci 127:201–212. https://doi.org/10.1016/j.ijthermalsci.2018.01.029

    Article  Google Scholar 

  26. Chai L, Dong G, Sheng H (2016) Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl Therm Eng 92:32–41. https://doi.org/10.1016/j.applthermaleng.2015.09.071

    Article  Google Scholar 

  27. Sharma CS, Tiwari MK, Michel B, Poulikakos D (2013) Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid. Int J Heat Mass Transf 58:135–151. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.012

    Article  Google Scholar 

  28. Baïri a., Zarco-Pernia E, García De María JM, (2014) A review on natural convection in enclosures for engineering applications. the particular case of the parallelogrammic diode cavity. Appl Therm Eng 63:304–322. https://doi.org/10.1016/j.applthermaleng.2013.10.065

    Article  Google Scholar 

  29. Al-Rashed AAAA, Shahsavar A, Entezari S, Moghimi MA, Adio SA, Nguyen TK (2019) Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng 155:247–258. https://doi.org/10.1016/j.applthermaleng.2019.04.009

    Article  Google Scholar 

  30. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  31. Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048

    Article  MATH  Google Scholar 

  32. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem 1:187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  33. Li J (2008) Computational analysis of nanofluid flow in microchannel with application to micro-heat sinks and BIO-MEMS

  34. Jang SP, Choi SUS (2013) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf. https://doi.org/10.1115/1.2712475

    Article  Google Scholar 

  35. Adio SA, Sharifpur M, Meyer JP (2015) Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Transf Eng. https://doi.org/10.1080/01457632.2015.994971

    Article  Google Scholar 

  36. Sharifpur M, Adio SA, Meyer JP (2015) Experimental investigation and model development for effective viscosity of Al2O3-glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf 68:208–219. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.002

    Article  Google Scholar 

  37. Awua JT, Ibrahim JS, Adio SA, Mehrabi M, Sharifpur M, Meyer JP (2018) Experimental investigations into viscosity, pH and electrical conductivity of nanofluid prepared from palm kernel fibre and a mixture of water and ethylene glycol. Bull Mater Sci 41:156. https://doi.org/10.1007/s12034-018-1676-1

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported wholly/in part by the National Research Foundation of South Africa (Grant Numbers: 120710).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saheed Adewale Adio or Daniel R. E. Ewim.

Ethics declarations

Conflict of interest

The authors of this article wish to state that no conflict of interest exit on this article.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adio, S.A., Olalere, A.E., Olagoke, R.O. et al. Thermal and entropy analysis of a manifold microchannel heat sink operating on CuO–water nanofluid. J Braz. Soc. Mech. Sci. Eng. 43, 76 (2021). https://doi.org/10.1007/s40430-020-02772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02772-x

Keywords

Navigation