Skip to main content

Advertisement

Log in

Mechanical properties of biocompatible Y-TZP/Al2O3 composites obtained from mechanically alloyed powders

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, an alumina-toughened zirconia composite (ATZ) was developed from mechanical alloyed nano-scale powder mixtures using low-sintering temperatures. A powder mixture, composed of 80 wt.% Y-TZP, ZrO2 (3 mol.% Y2O3), and 20 wt.% Al2O3, was prepared by mechanical alloying (MA) in a planetary ball mill under argon atmosphere, with milling times of up to 60 h, using a rotary speed of 200 rpm and a ball-to-powder weight ratio of 10:1. The mixtures were compacted at 100 MPa and sintered at 1400 °C—2 h. In the milled powders, the crystallite size of the ZrO2 matrix was reduced from 130 to 40 Å, when increasing the milling time from 1 to 60 h. After sintering, the samples were characterized by its phase composition, microstructure, relative density, fracture toughness and biaxial flexural strength. Fully dense samples were obtained after sintering the powder-mixture milled for 60 h at 1400 °C—2 h. In comparison, the conventional powder-mixture achieved high densification only after sintering at 1600 °C—2 h. Sintered samples prepared with mechanical alloyed powder mixtures presented a fracture toughness (KIC) of 8.2 ± 0.3 MPa m1/2 and a bending strength of 880 ± 45 MPa, significantly higher compared to samples prepared from the conventional processed powder mixture sintered at 1600 °C—2 h, presenting a KIC of 6.7 ± 0.5 MPam1/2 and a bending strength of 697 ± 85 MPa. The improved mechanical strength of the composites prepared from mechanical alloyed powders is attributed to the increased sinterability of these powders, allowing full densification at 1400 °C, and also resulting in a reduction in the tetragonal ZrO2 grain size. Thus, a larger population of these grains is formed in the microstructure, increasing fracture toughness and strength by the tetragonal to monoclinic phase transformation toughening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27(4):535–543

    Google Scholar 

  2. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25

    Google Scholar 

  3. Stevens R (1986) An introduction to zirconia. Magnesium elektron publication, Manchester, UK

    Google Scholar 

  4. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920

    Google Scholar 

  5. Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32

    Google Scholar 

  6. Siarampi E, Kontonasaki E, Andrikopoulos KS et al (2014) Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dent Mater 30(12):e306–e316

    Google Scholar 

  7. International Organization for Standardization, ISO 13356:2015: implants for surgery - ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP)

  8. Sequeira S, Fernandes MH, Neves N, Almeida MM (2017) Development and characterization of zirconia–alumina composites for orthopedic implants. Ceram Int 43(1):693–703

    Google Scholar 

  9. Kurtz SM, Kocagöz S, Arnholt C, Huet R, Ueno M, Walter WL (2014) Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater 31:107–116

    Google Scholar 

  10. Hossen MM, Chowdhury FUZ, Gafur MA, Hakim AA, Hossen MB (2014) Effect of zirconia substitution on structural and mechanical properties of ZTA composites. IOSR J Mech Civil Eng 11(2):01–07

    Google Scholar 

  11. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23(3):937–945

    Google Scholar 

  12. Basu B, Vleugels J, Van Der Biest O (2004) Transformation behaviour of tetragonal zirconia: role of dopant content and distribution. Mater Sci Eng, A 366(2):338–347

    Google Scholar 

  13. Taya M, Hayashi S, Kobayashi AS, Yoon HS (1990) Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc 73(5):1382–1391

    Google Scholar 

  14. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Google Scholar 

  15. Benjamin JS (1992) Fundamentals of mechanical alloying. Mater Sci Forum 88:1–18

    Google Scholar 

  16. Hüller M, Chernik GG, Fokina EL, Budim NI (2008) Mechanical alloying in planetary mills of high accelerations. Rev Adv Mater Sci 18:366–374

    Google Scholar 

  17. Santos C, Habibe AF, Rodrigues D, Minatti JC, Lins JFC, dos Santos LA (2014) Microstructural characterization of 66% Co-28% Cr-6% Mo dental alloy powder obtained by high-energy ball milling. Mater Sci Forum 802:51–55

    Google Scholar 

  18. Lim PN, Konishi T, Wang Z, Feng J, Thian ES (2018) Enhancing osteoconductivity and biocompatibility of silver-substituted apatite in vivo through silicon co-substitution. Mater Lett 212(1):90–93

    Google Scholar 

  19. Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10(1):17–22

    Google Scholar 

  20. Kraus W, Nolze G (1996) POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29(3):301–303

    Google Scholar 

  21. Degen T, Sadki M, Bron E, König U, Nénert G (2014) The high score suite. Powder Diffr 29(S2):S13–S18

    Google Scholar 

  22. Hill RJ, Howard CJ (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr 20(6):467–474

    Google Scholar 

  23. Krimm S, Tobolsky AV (1951) Quantitative X-ray studies of order in amorphous and crystalline polymers. Quantitative X-ray determination of crystallinity in polyethylene. J Polym Sci 7(1):57–76

    Google Scholar 

  24. Sproull WT (1946) X-rays in practice. McGraw-Hill, New York, p 438

    Google Scholar 

  25. Klug HP, Alexander LE (1974) X-ray diffraction procedures; for polycrystalline and amorphous materials. Willey, New York, p 618

    Google Scholar 

  26. International Organization for Standardization, ISO 6872:2015: dentistry - ceramic materials

  27. Santos C, Ribeiro S, Daguano JKMF, Rogero SO, Strecker K, Silva CRM (2007) Development and cytotoxicity evaluation of SiAlONs ceramics. Mater Sci Eng, C 27(1):148–153

    Google Scholar 

  28. Jerebtsov DA, Mikhailov GG, Sverdina SV (2000) Phase diagram of the system: Al2O3–ZrO2. Ceram Int 26(8):821–823

    Google Scholar 

  29. Kwon NH, Kim GH, Song HS, Lee HL (2001) Synthesis and properties of cubic zirconia–alumina composite by mechanical alloying. Mater Sci Eng, A 299(1–2):185–194

    Google Scholar 

  30. Farnè G, Ricciardiello FG, Podda LK, Minichelli D (1999) Innovative milling of ceramic powders: influence on sintering zirconia alloys. J Eur Ceram Soc 19(3):347–353

    Google Scholar 

  31. Shi JL, Li BS, Ruan ML, Yen TS (1995) Processing of nano-Y-TZP/Al2O3 composites. I: Preparation and characterization of nano-Y-TZP/Al2O3 composite powders. J Eur Ceram Soc 15(10):959–965

    Google Scholar 

  32. Basu B, Vleugels J, Van Der Biest O (2004) ZrO2–Al2O3 composites with tailored toughness. J Alloy Compd 372(1–2):278–284

    Google Scholar 

  33. Kibbel B, Heuer AH (1986) Exaggerated grain growth in ZrO2-toughened Al2O3. J Am Ceram Soc 69(3):231–236

    Google Scholar 

  34. Matsui K, Horikoshi H, Ohmichi N, Ohgai M, Yoshida H, Ikuhara Y (2003) Cubic-formation and grain-growth mechanisms in tetragonal zirconia polycrystal. J Am Ceram Soc 86(8):1401–1408

    Google Scholar 

  35. Matsui K, Ioshida H, Ikuhara Y (2008) Grain-boundary structure and microstructure development mechanism in 2–8mol% yttria-stabilized zirconia polycrystals. Acta Mater 56(6):1315–1325

    Google Scholar 

  36. Loudjani MK, Cortès R (2000) Study of the local environment around zirconium ions in polycrystalline α-alumina in relation with kinetics of grain growth and solute drag. J Eur Ceram Soc 20(10):1483–1491

    Google Scholar 

  37. Chevalier J, Deville S, Münch E, Jullian R, Lair F (2004) Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 25(24):5539–5545

    Google Scholar 

  38. Heuer AH, Claussen N, Kriven WM, Ruhle M (1982) Stability of tetragonal ZrO2 particles in ceramic matrices. J Am Ceram Soc 65(12):642–650

    Google Scholar 

  39. Dehestani M, Adolfsson E (2012) Phase stability and mechanical properties of zirconia and zirconia composites. Int J Appl Ceram Technol 10(1):129–141

    Google Scholar 

  40. Filippov RA, Freidin AB, Hussainova IV, Vilchevskaya EN (2015) Critical radius of zirconia inclusions in transformation toughening of ceramics. Phys Mesomech 18(1):33–42

    Google Scholar 

  41. Casellas D, Nagl M, Llanes L, Anglada M (2003) Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol 143–144:148–152

    Google Scholar 

  42. Maji A, Choubey G (2018) Microstructure and mechanical properties of alumina toughened zirconia (ATZ). Mater Today Proc 5(2):7457–7465

    Google Scholar 

  43. Shi JL, Lu ZL, Guo JK (2000) Model analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria-stabilized tetragonal zirconia polycrystalline ceramics. J Mater Res 15(3):727–732

    Google Scholar 

  44. Shi JL, Li L, Guo JK (1998) Boundary stress and its effect on toughness in thin boundary layered and particulate composites: model analysis and experimental test on Y-TZP-based ceramic composites. J Eur Ceram Soc 18(14):2035–2043

    Google Scholar 

  45. Rühle M, Evans AG (1989) High toughness ceramics and ceramic composites. Prog Mater Sci 33(2):85–167

    Google Scholar 

  46. Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487

    Google Scholar 

  47. Amaral M, Lopes MA, Silva RF, Santos JD (2002) Densification route and mechanical properties of Si3N4–bioglass biocomposites. Biomaterials 23(3):857–862

    Google Scholar 

Download references

Acknowledgements

The authors would like thank FAPERJ (E26-01.476/2014) and CNPq (311.119/2017-4, 132.136/2018-0) for financial support. Furthermore, this study was financed in part (doctoral support—B. Xavier) by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Strecker.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, B.X., Alves, M.F.R.P., Santos, C. et al. Mechanical properties of biocompatible Y-TZP/Al2O3 composites obtained from mechanically alloyed powders. J Braz. Soc. Mech. Sci. Eng. 42, 353 (2020). https://doi.org/10.1007/s40430-020-02431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02431-1

Keywords

Navigation