Skip to main content
Log in

Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd-B: oblique stagnation flow with a non-Fourier heat flux model

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Reactive magnetohydrodynamic flows arise in many areas of nuclear reactor transport. Working fluids in such systems may be either Newtonian or non-Newtonian. Motivated by these applications, in the current study, a mathematical model is developed for electrically conducting viscoelastic oblique flow impinging on stretching wall under transverse magnetic field. A non-Fourier Cattaneo–Christov model is employed to simulate thermal relaxation effects which cannot be simulated with the classical Fourier heat conduction approach. The Oldroyd-B non-Newtonian model is employed which allows relaxation and retardation effects to be included. A convective boundary condition is imposed at the wall invoking Biot number effects. The fluid is assumed to be chemically reactive and both homogeneous–heterogeneous reactions are studied. The conservation equations for mass, momentum, energy and species (concentration) are altered with applicable similarity variables and the emerging strongly coupled, nonlinear non-dimensional boundary value problem is solved with robust well-tested Runge–Kutta–Fehlberg numerical quadrature and a shooting technique with tolerance level of 10−4. Validation with the Adomian decomposition method is included. The influence of selected thermal (Biot number, Prandtl number), viscoelastic hydrodynamic (Deborah relaxation number), Schmidt number, magnetic parameter and chemical reaction parameters, on velocity, temperature and concentration distributions are plotted for fixed values of geometric (stretching rate, obliqueness) and thermal relaxation parameter. Wall heat transfer rate (local heat flux) and wall species transfer rate (local mass flux) are also computed and it is observed that local mass flux increases with strength of heterogeneous reactions whereas it decreases with strength of homogeneous reactions. The results provide interesting insights into certain nuclear reactor transport phenomena and furthermore a benchmark for more general CFD simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sherwood D, Eduardo Sáez A (2014) The start of ebullition in quiescent, yield-stress fluids. Nucl Eng Des 270:101–108

    Article  Google Scholar 

  2. Norouzi M, Davoodi M, Anwar Bég O, Joneidi AA (2013) Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow. Int J Therm Sci 69:61–69

    Article  Google Scholar 

  3. Tan W, Masuoka T (2005) Stokes’ first problem for an Oldroyd-B fluid in a porous half space. Phys Fluids 17(2):023101

    Article  MathSciNet  Google Scholar 

  4. Jamil M, Fetecau C, Imran M (2011) Unsteady helical flows of Oldroyd-B fluids. Commun Nonlinear Sci Numer Simul 16(3):1378–1386

    Article  MathSciNet  Google Scholar 

  5. Ashrafi N, Zeydabadi H (2012) Analysis of gravity-driven slurry flow. In: ASME 2012 international mechanical engineering congress and exposition, Houston, Texas, USA, November 9–15

  6. Niu J, Shi ZH, Tan WC (2013) The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media. J Hydrodyn 25:639–642

    Article  Google Scholar 

  7. Fetecau C, Prasad SC, Rajagopal K (2007) A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Appl Math Model 31(4):647–654

    Article  Google Scholar 

  8. Doležel I, Donátová M, Karban P, Ulrych B (2009) Pumps of molten metal based on magnetohydrodynamic principle for cooling high-temperature nuclear reactors. Przeglad Elektrotechniczny 4:13–16

    Google Scholar 

  9. Smith JF, Hsiao Ming-Yuan, Lin Thomas F, Willis Michael G (1991) Magneto-hydrodynamically enhanced heat transfer in a liquid metal system. Nucl Eng Des 125:147–159

    Article  Google Scholar 

  10. Reed CB, Hua TQ, Black DB, Kirillov IR, Sidorenkov SI, Shapiro AM, Evtushenko IA (1993) Liquid metal MHD and heat transfer in a tokamak blanket slotted coolant channel. In: 15th IEEE/NPSS symposium. Fusion Engineering, vol 1, pp 263–272

  11. Han J, Weihua W. Shenghong H, Haifei D, Rongfei W (2015) A numerical method of heat transfer for the magnetohydrodynamic flow in the blanket at high Hartmann Number. In: 2015 IEEE 26th symposium on fusion engineering (SOFE), Austin, Texas, USA

  12. Khan M, Arshad M, Anjum A (2012) On exact solutions of Stokes second problem for MHD Oldroyd-B fluid. Nucl Eng Des 243:20–32

    Article  Google Scholar 

  13. Zheng L, Liu Y, Zhang X (2012) Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal Real World Appl 13(2):513–523

    Article  MathSciNet  Google Scholar 

  14. Schlichting H (2000) Boundary-layer theory, 9th edn. MacGraw-Hill, New York

    Book  Google Scholar 

  15. Chiam T (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63(6):2443–2444

    Article  Google Scholar 

  16. Ishak A, Nazar R, Amin N, Filip D, Pop I (2007) Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet. Malays J Math 1(2):217–226

    Google Scholar 

  17. Gupta D-, Kumar L, Anwar Bég O, Singh B (2015) Finite element simulation of nonlinear magneto-micropolar stagnation point flow from a porous stretching sheet with prescribed skin friction. Comput Therm Sci 7(1):1–14

    Article  Google Scholar 

  18. Uddin MJ, Khan WA, Ismail MdAI, Anwar Bég O (2016) Computational study of three-dimensional stagnation point nanofluid bio-convection flow on a moving surface with anisotropic slip and thermal jump effects. ASME J Heat Transf 138(10):104502

    Article  Google Scholar 

  19. Le Blanc JV, Malone MF (1986) Simulation of viscoelastic stagnation flow. Rheol Acta 25:15–22

    Article  Google Scholar 

  20. Park HS (1984) Planar extension of polystyrene melts in stagnation flow dies. MS Thesis, Univ. of Massachusetts, USA

  21. Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation-point flow of upper-convected Maxwell fluids. Int J Nonlinear Mech 41(10):1242–1247

    Article  Google Scholar 

  22. Renardy M (2006) Viscoelastic stagnation point flow in a wake. J Non-Newtonian Fluid Mech 138:206–208

    Article  Google Scholar 

  23. Javed T, Ghaffari A, Ahmad H (2015) Numerical study of unsteady MHD oblique stagnation point flow with heat transfer over an oscillating flat plate. Can J Phys 93(10):1138–1143

    Article  Google Scholar 

  24. Mahapatra TR, Dholey S, Gupta A (2007) Heat transfer in oblique stagnation-point flow of an incompressible viscous fluid towards a stretching surface. Heat Mass Transf 43(8):767–773

    Article  Google Scholar 

  25. Labropulu F, Li D, Pop I (2010) Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int J Therm Sci 49(6):1042–1050

    Article  Google Scholar 

  26. Wu HW, Perng SW (1999) Effect of an oblique plate on the heat transfer enhancement of mixed convection over heated blocks in a horizontal channel. Int J Heat Mass Transf 42(7):1217–1235

    Article  Google Scholar 

  27. Yian LY, Amin N, Pop I (2007) Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate. Int J Heat Mass Transf 50(23):4855–4863

    Article  Google Scholar 

  28. Li D, Labropulu F, Pop I (2009) Oblique stagnation-point flow of a viscoelastic fluid with heat transfer. Int J Non-Linear Mech 44:1024–1030

    Article  Google Scholar 

  29. Zheng R, Phan-Thien N (1994) On the non-orthogonal stagnation flow of the Oldroyd-B fluid. ZAMP 45:99–115

    MathSciNet  MATH  Google Scholar 

  30. Fourier J (1832) Theorie analytique de la chaleur, Chez Firmin Didot, père et fils

  31. Cattaneo C (1948) Sulla conduzione del calore

  32. Akbar NS, Anwar Bég O, Khan ZH (2017) Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. Int J Numer Meth Heat Fluid Flow 27(6):1–17

    Article  Google Scholar 

  33. Bhatti MM, Shahid A, Anwar Bég O, Kadir A (2017) Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo-Christov heat flux model. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2933-8

    Article  Google Scholar 

  34. Chaudhary M, Merkin J (1995) A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I equal diffusivities. Fluid Dyn Res 16(6):311–333

    Article  MathSciNet  Google Scholar 

  35. Khan W, Pop I (2012) Effects of homogeneous–heterogeneous reactions on the viscoelastic fluid toward a stretching sheet. ASME J Heat Transf 134(6):064506

    Article  Google Scholar 

  36. Kameswaran PK, Shaw S, Sibanda P (2013) Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int J Heat Mass Transf 57(2):465–472

    Article  Google Scholar 

  37. Shaw S, Kameswaran PK, Sibanda P (2013) Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Bound Value Probl 1:77

    Article  MathSciNet  Google Scholar 

  38. Rana S, Mehmood R, Akbar NS (2016) Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous–heterogeneous reactions. J Mol Liq 222:1010–1019

    Article  Google Scholar 

  39. Soundalgekar VM, Gupta SK (1978) Effects of an external circuit on the dispersion of soluble matter in a magnetohydrodynamic channel flow with homogeneous and heterogeneous reactions. Nucl Eng Des 50(2):217–223

    Article  Google Scholar 

  40. Hayat T, Nadeem S, Asghar S (2004) Hydromagnetic couette flow of an Oldroyd-B fluid in a rotating system. Int J Eng Sci 42:65–78

    Article  MathSciNet  Google Scholar 

  41. Christov C (2009) On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun 36(4):481–486

    Article  MathSciNet  Google Scholar 

  42. Nadeem S, Mehmood R, Akbar NS (2015) Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. J Magn Magn Mater 378:457–462

    Article  Google Scholar 

  43. Anwar Bég O, Uddin MJ, Rashidi MM, Kavyani N (2014) Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects. J Eng Thermophys 23(2):79–97

    Article  Google Scholar 

  44. Uddin MJ, Bég Anwar O, Aziz A, Ismail AIM (2015) Group analysis of free convection flow of a magnetic nanofluid with chemical reaction. Prob Eng, Math. https://doi.org/10.1155/2015/621503

    Book  MATH  Google Scholar 

  45. Adomian G (1994) Solving Frontier problems in physics: the decomposition method. Kluwer, Dordrecht

    Book  Google Scholar 

  46. Kezzar M, Sar MR (2017) Series solution of nanofluid flow and heat transfer between stretchable/shrinkable inclined walls. Int J Appl Comput Math 3:2231–2255

    Article  MathSciNet  Google Scholar 

  47. Ebaid A, Aljoufi MD, Wazwaz AM (2015) An advanced study on the solution of nanofluid flow problems via Adomian’s method. Appl Math Lett 46:117–122

    Article  MathSciNet  Google Scholar 

  48. Anwar Bég O, Tripathi D, Sochi T, Gupta PK (2015) Adomian decomposition method (ADM) simulation of magneto-biotribological squeeze film with magnetic induction effects. J Mech Med Biol 15:1550072.1–1550072.23

    Google Scholar 

  49. Aaboubi O, Hadjaj A, Omar AYA (2015) Application of Adomian method for the magnetic field effects on mass transport at vertical cylindrical electrode. Electrochim Acta 276–284. http://www.sciencedirect.com/science/journal/00134686/184/supp/C

    Article  Google Scholar 

  50. Rallison JM, Hinch EJ (2003) flow of an Oldroyd fluid past a re-entrant corner: the downstream boundary layer. J Non-Newtonian Fluid Mech 116:141–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Reviewer comments which have improved the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Mehmood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding this research work with any individual or organization.

Additional information

Technical Editor: Cezar Negrao, PhD.

Appendix

Appendix

Introducing Eq. (31) into Eqs. (2330) and eliminating the pressure term we have:

$$ \begin{aligned} & 2\frac{{\partial^{2} \zeta }}{{\partial x_{1}^{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }} + \frac{\partial \zeta }{{\partial x_{2} }}\left( {\frac{{\partial^{3} \zeta }}{{\partial x_{1}^{3} }} + \frac{{\partial^{3} \zeta }}{{\partial x_{1} \partial x_{2}^{2} }}} \right) + \frac{\partial \zeta }{{\partial x_{1} }}\left( {\frac{{\partial^{3} \zeta }}{{\partial x_{2} \partial x_{1}^{2} }} - \frac{{\partial^{3} \zeta }}{{\partial x_{2}^{3} }}} \right) - \nabla^{4} \zeta + \beta_{1} \left\{ {2\frac{{\partial^{3} \zeta }}{{\partial x_{2} \partial x_{1}^{2} }}\left( {\frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }} - \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1}^{2} }} - \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }}} \right) + 2\frac{{\partial^{3} \zeta }}{{\partial x_{1} \partial x_{2}^{2} }}\left( {\frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1}^{2} }} - \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }} - \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }}} \right) + \left( {\frac{\partial \zeta }{{\partial x_{1} }}} \right)^{2} \left( {\frac{{\partial^{4} \zeta }}{{\partial x_{2}^{4} }} + \frac{{\partial^{4} \zeta }}{{\partial x_{1}^{2} \partial x_{2}^{2} }}} \right) + \left( {\frac{\partial \zeta }{{\partial x_{2} }}} \right)^{2} \left( {\frac{{\partial^{4} \zeta }}{{\partial x_{1}^{4} }} + \frac{{\partial^{4} \zeta }}{{\partial x_{1}^{2} \partial x_{2}^{2} }}} \right) + 2\frac{\partial \zeta }{{\partial x_{1} }}\left( {\frac{{\partial^{3} \zeta }}{{\partial x_{2}^{3} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }} - \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{4} \zeta }}{{\partial x_{2} \partial x_{1}^{3} }} - \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{4} \zeta }}{{\partial x_{1} \partial x_{2}^{3} }}} \right)} \right\} - \beta_{2} \left\{ {2\left( {\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }} - \frac{{\partial^{2} \zeta }}{{\partial x_{1}^{2} }}} \right)\left( {\frac{{\partial^{4} \zeta }}{{\partial x_{1} \partial x_{2}^{3} }} + \frac{{\partial^{4} \zeta }}{{\partial x_{2} \partial x_{1}^{3} }}} \right) - \frac{\partial \zeta }{{\partial x_{1} }}\left( {\frac{{\partial^{5} \zeta }}{{\partial x_{2}^{5} }} + \frac{{\partial^{5} \zeta }}{{\partial x_{2} \partial x_{1}^{4} }} + 2\frac{{\partial^{5} \zeta }}{{\partial x_{1}^{2} \partial x_{2}^{3} }}} \right) + \frac{\partial \zeta }{{\partial x_{2} }}\left( {\frac{{\partial^{5} \zeta }}{{\partial x_{1}^{5} }} + \frac{{\partial^{5} \zeta }}{{\partial x_{1} \partial x_{2}^{4} }} + 2\frac{{\partial^{5} \zeta }}{{\partial x_{1}^{3} \partial x_{2}^{2} }}} \right) - 2\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }}\left( {\frac{{\partial^{4} \zeta }}{{\partial x_{1}^{2} \partial x_{2}^{2} }} + \frac{{\partial^{4} \zeta }}{{\partial x_{2}^{4} }}} \right) - 2\frac{{\partial^{3} \zeta }}{{\partial x_{2} \partial x_{1}^{2} }}\left( {\frac{{\partial^{3} \zeta }}{{\partial x_{1}^{3} }} + \frac{{\partial^{3} \zeta }}{{\partial x_{1} \partial x_{2}^{2} }} + \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{5} \zeta }}{{\partial x_{2} \partial x_{1}^{4} }}} \right)} \right\} + M\left\{ {\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }} - \beta_{1} \left( {\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }} + \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{3} \zeta }}{{\partial x_{2}^{3} }}} \right)} \right\} \\ & - \lambda \left\{ {\frac{\partial T}{{\partial x_{2} }} + \beta_{1} \left( {\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }}\frac{\partial T}{{\partial x_{2} }} + \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} T}}{{\partial x_{1} \partial x_{2} }} - 2\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }}\frac{\partial T}{{\partial x_{2} }} - \frac{{\partial^{2} T}}{{\partial x_{2}^{2} }}\frac{\partial \zeta }{{\partial x_{1} }} - T\frac{{\partial^{3} \zeta }}{{\partial x_{1} \partial x_{2}^{2} }}} \right)} \right\} = 0, \\ \end{aligned} $$
(61)
$$ P_{r} \left[ {\frac{\partial \zeta }{{\partial x_{2} }}\frac{\partial T}{{\partial x_{1} }} - \frac{\partial \zeta }{{\partial x_{1} }}\frac{\partial T}{{\partial x_{2} }} + \beta_{2} \left\{ {\left( {\frac{\partial \zeta }{{\partial x_{2} }}} \right)^{2} \frac{{\partial^{2} T}}{{\partial x_{1}^{2} }} + \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} T}}{{\partial x_{2}^{2} }} - 2\frac{\partial \zeta }{{\partial x_{1} }}\frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} T}}{{\partial x_{1} \partial x_{2} }} + \left( {\frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }} - \frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }}} \right)\frac{\partial T}{{\partial x_{1} }} + \left( {\frac{\partial \zeta }{{\partial x_{1} }}\frac{{\partial^{2} \zeta }}{{\partial x_{1} \partial x_{2} }} - \frac{\partial \zeta }{{\partial x_{2} }}\frac{{\partial^{2} \zeta }}{{\partial x_{2}^{2} }}} \right)\frac{\partial T}{{\partial x_{2} }}} \right\}} \right] = \frac{{\partial^{2} T}}{{\partial x_{2}^{2} }}, $$
(62)
$$ - \frac{\partial \zeta }{{\partial x_{1} }}j^{\prime } \left( {x_{2} } \right) = \frac{1}{{S_{c} }}j^{{\prime \prime }} \left( {x_{2} } \right) - k_{1} j\left( {x_{2} } \right)s^{2} \left( {x_{2} } \right), $$
(63)
$$ - \frac{\partial \zeta }{{\partial x_{1} }}s^{\prime } \left( {x_{2} } \right) = \frac{\delta }{Sc}s^{\prime \prime } \left( {x_{2} } \right) + k_{1} j\left( {x_{2} } \right)s^{2} \left( {x_{2} } \right), $$
(64)
$$ \left. {\begin{array}{*{20}l} {\frac{\partial \zeta }{{\partial x_{2} }} = x_{1} , \frac{\partial \zeta }{{\partial x_{1} }} = 0, \frac{\partial T}{{\partial x_{2} }} = - Bi\left( {1 - T} \right),} \hfill \\ {D_{A} j^{\prime } \left( {x_{2} } \right) = k_{s} \sqrt {\frac{\nu }{c}} j\left( {x_{2} } \right), D_{B} s^{\prime } \left( {x_{2} } \right) = - k_{s} \sqrt {\frac{\nu }{c}} j\left( {x_{2} } \right),} \hfill \\ \end{array} } \right\} {\text{at}}\,x_{2} = 0, $$
(65)
$$ \frac{\partial \zeta }{{\partial x_{2} }} = \frac{a}{c}x_{1} + \gamma_{1} x_{2} , T = 0, j\left( {x_{2} } \right) \to 1,s\left( {x_{2} } \right) \to 0, \hbox{at} \quad x_{2} \to \infty . $$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, R., Rana, S., Anwar Bég, O. et al. Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd-B: oblique stagnation flow with a non-Fourier heat flux model. J Braz. Soc. Mech. Sci. Eng. 40, 526 (2018). https://doi.org/10.1007/s40430-018-1446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1446-4

Keywords

Navigation