Skip to main content

Advertisement

Log in

Energy analysis and exhaust emissions of a stationary engine fueled with diesel–biodiesel blends at variable loads

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Compression ignition engines are widely used for transportation and power generation around the world. Even though high efficiencies are obtained for these machines, their main energy source is a non-renewable fuel. In addition to that, greenhouse gases, nitrogen oxides, particulate matter and other non-desirable substances are emitted. Biodiesel is a fuel usually proposed for Diesel engines because it is non-toxic, renewable, can be produced from different oil seeds and does not require significant modifications in the engine. This work investigates the exhaust emissions and performance of a six-cylinder direct injection Diesel engine that drives a 60-kVA electric generator at 1800 rpm. The engine was fueled with five different blends (D95B5, D75B25, D50B50, D25B75, B100) of conventional diesel oil containing up to 10 ppm of sulfur (S10 class) and biodiesel at different loads. An in-house developed system for particulate matter (PM) evaluation was created. Gaseous emissions and energy flows were evaluated. A reduction of 45% in PM emissions was observed by increasing biodiesel content from B5 to B100 at the highest load tested (27 kW). CO and NOx emissions increased slightly when compared to the mixture commercialized in Brazilian market (5% biodiesel and 95% conventional diesel). No significant variation in energy efficiency was revealed by increasing the percentage of biodiesel in the blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(\dot{B}\) :

Exergy flow rate (kW)

c :

Specific heat [kJ/(kg K)]

\(\dot{E}\) :

Energy flow rate (kW)

\(\dot{n}\) :

Molar flow rate (kmol/s)

\(\overline{\text{LHV}}\) :

Low heating value (kJ/kmol)

\(\dot{Q}\) :

Heat flow rate (kW)

R :

Mixture constant [kJ/(kg K)]

W :

Power (kW)

CV:

Control volume

CW:

Cooling water

EX:

Exhaust gas

F:

Fuel/formation

P:

Products/pressure

R:

Reactants

REF:

Reference

References

  1. Yage Di et al (2009) Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci Total Environ 407:835–846. doi:10.1016/j.scitotenv.2008.09.023

    Article  Google Scholar 

  2. Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216. doi:10.1016/j.rser.2009.07.017

    Article  Google Scholar 

  3. Lapuerta M et al (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223. doi:10.1016/j.pecs.2007.07.001

    Article  Google Scholar 

  4. Alves L, Uturbey W (2010) Environmental degradation costs in electricity generation: the case of the Brazilian electrical matrix. Energy Policy 38:6204–6214. doi:10.1016/j.enpol.2010.06.006

    Article  Google Scholar 

  5. Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15:1098–1116. doi:10.1016/j.rser.2010.11.016

    Article  Google Scholar 

  6. Roy M, Wang W, Bujold J (2013) Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations. Appl Energy 106:198–208. doi:10.1016/j.apenergy.2013.01.057

    Article  Google Scholar 

  7. Raheman H, Phadatare G (2004) Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenergy 27:393–397. doi:10.1016/j.biombioe.2004.03.002

    Article  Google Scholar 

  8. Haas J et al (2001) Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock. Energy Fuels 15:1207–1212. doi:10.1021/ef010051x

    Article  Google Scholar 

  9. Tan P et al (2012) Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel. Energy 39:356–362. doi:10.1016/j.energy.2012.01.002

    Article  Google Scholar 

  10. Muralidharan K et al (2011) Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine. Energy 36:5385–5393. doi:10.1016/j.energy.2011.06.050

    Article  Google Scholar 

  11. Silitonga S et al (2013) Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Convers Manage 76:828–836. doi:10.1016/j.enconman.2013.08.032

    Article  Google Scholar 

  12. Fattah M et al (2013) Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew Sustain Energy Rev 18:552–567. doi:10.1016/j.rser.2012.10.036

    Article  Google Scholar 

  13. Nabi M et al (2009) Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl Therm Eng 29:2265–2270. doi:10.1016/j.applthermaleng.2008.11.009

    Article  Google Scholar 

  14. Saravanan S et al (2012) Correlation for thermal NOx formation in compression ignition (CI) engine fuelled with diesel and biodiesel. Energy 42:401–410. doi:10.1016/j.energy.2012.03.028

    Article  Google Scholar 

  15. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  16. Giakoumis EG (2012) A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles. Appl Energy 98:273–291. doi:10.1016/j.apenergy.2012.03.037

    Article  Google Scholar 

  17. EPA (2002) A comprehensive analysis of biodiesel impacts on exhaust emissions, EPA 420-P-02-001. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  18. Aydin H, Bayindir H (2010) Performance and emission analysis of cotton seed oil methyl ester in a diesel engine. Renew Energy 35:588–592. doi:10.1016/j.renene.2009.08.009

    Article  Google Scholar 

  19. Wu F et al (2009) A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmos Environ 43:1481–1485. doi:10.1016/j.atmosenv.2008.12.007

    Article  Google Scholar 

  20. Canakçi M, Van Gerpen J (2001) The performance and emissions of a Diesel engine fueled with biodiesel from yellow grease and soybean oil. ASAE Ann Int Meet. doi:10.13031/2013.4210

    Google Scholar 

  21. Canakçi M, Hosoz M (2006) Energy and exergy analyses of a diesel engine fuelled with various biodiesels. Energy Sources B-1:379–394. doi:10.1080/15567240500400796

    Article  Google Scholar 

  22. Weber Menezes, Cataluña R (2008) Amostragem do Material Particulado e Fração Orgânica Volátil das Emissões em Motor Ciclo Diesel sem a Utilização de Túnel de Diluição. Quim Nova 31:2027–2030. doi:10.1590/S0100-40422008000800021

    Article  Google Scholar 

  23. Tat M E, Van Gerpen JH (2003) Measurement of biodiesel speed of sound and its impact on injection timing. NREL/SR-510-31462. http://www.osti.gov/bridge. Accessed 1 May 2017

  24. Moran M, Shapiro H (2009) Princípios da Termodinâmica, 6ª edn. LTC, São Paulo

    Google Scholar 

  25. Hazar H (2009) Effects of biodiesel on a low heat loss diesel engine. Renew Energy 34:1533–1537. doi:10.1016/j.renene.2008.11.008

    Article  Google Scholar 

  26. Özturk E (2015) Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture. Fuel Process Technol 129:183–191. doi:10.1016/j.fuproc.2014.09.016

    Article  Google Scholar 

  27. Hoekman K, Robbins C (2012) Review of the effects of biodiesel on NOx emissions. Fuel Process Technol 96:237–249. doi:10.1016/j.fuproc.2011.12.036

    Article  Google Scholar 

  28. Fazal A et al (2011) Biodiesel feasibility study: an evaluation of material compatibility; performance; emission and engine durability. Renew Sustain Energy Rev 15:1314–1324. doi:10.1016/j.rser.2010.10.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the CAPES, CNPq, for the financial support and AGERADORA Company (Salvador-Bahia-Brazil) for the Diesel Generator used in the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. M. da Silva.

Additional information

Technical Editor: Fernando Marcelo Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, T.B., Ferreira, V.P., Torres, E.A. et al. Energy analysis and exhaust emissions of a stationary engine fueled with diesel–biodiesel blends at variable loads. J Braz. Soc. Mech. Sci. Eng. 39, 3237–3247 (2017). https://doi.org/10.1007/s40430-017-0847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0847-0

Keywords

Navigation