Skip to main content
Log in

Numerical investigation on the dynamic behavior of an onboard rotor system by using the FEM approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an investigation regarding the dynamic behavior of a rotating machine subjected to a base excitation is presented numerically. Regarding aeronautical applications, the aircraft engine is considered a typical onboard rotor that has its dynamic behavior influenced by base excitations. The mathematical model of the machine is derived from the finite element method, which is obtained by considering the strain and kinetic energies of the rotor subsystems (shaft, discs, bearings, mass unbalance, etc.). The resulting differential equations are used to provide information about the vibration responses of the rotor under base and unbalance excitations, simultaneously. The rotating machine used in this work is represented by a horizontal flexible shaft containing two rigid discs and supported by two ball bearings. In this case, the base of the rotor system is considered as being rigid. Therefore, the proposed analysis is performed both in the time and frequency domains, as generated by the orbits, unbalance response, and Campbell diagram of the rotor. This study illustrates the differences between fixed and onboard rotors, focusing on the dynamic behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cavalca KL, Cavalvante PF, Okabe EP (2005) An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mech Syst Signal Process 19(1):157–174

    Article  Google Scholar 

  2. Cavalini AA Jr, Lara-Molina FA, Sales TP, Koroishi EH, Steffen V Jr (2015) Uncertainty analysis of a flexible rotor supported by fluid film bearings. Latin Am J Solids Struct 12(8):1487–1504

    Article  Google Scholar 

  3. Cavalini AA Jr, Lobato FS, Koroishi EH, Steffen V Jr (2015) Model updating of a rotating machine using the self-adaptive differential evolution algorithm. Inverse Probl Sci Eng 24(3):504–523

    Article  Google Scholar 

  4. Dakel M, Baguet S, Dufour R (2014) Steady-state dynamic behavior of an on-board rotor under combined base motions. J Vib Control 20(15):2254–2287

    Article  Google Scholar 

  5. Das AS, Dutt JK, Ray K (2010) Active vibration control of unbalanced flexible rotor-shaft systems parametrically excited due to base motion. Appl Math Model 34(1):2353–2369

    Article  MathSciNet  MATH  Google Scholar 

  6. Duchemin M (2003) Contribuition à l’étude du comportement dynamic d’un rotor embarqué. PhD thesis, INSA Lyon, Lyon

  7. Duchemin M, Berlioz A, Ferraris G (2006) Dynamic behavior and stability of a rotor under base excitation. ASME J Vib Acoust 128:576

    Article  Google Scholar 

  8. El-Saeidy FMA, Sticher F (2010) Dynamics of a rigid rotor linear/nonlinear bearings system subject to rotating unbalance and base excitations. J Vib Control 16(3):403–438

    Article  MATH  Google Scholar 

  9. Hori Y, Kato T (1990) Earthquake-induced instability of a rotor supported by oil film bearings. ASME J Vib Acoust 112(2):160–165

    Article  Google Scholar 

  10. Lalanne M, Ferraris G (1998) Rotordynamics prediction in engineering. Wiley, Chichester

  11. Lei H, Yushu C (2014) Dynamical simulation and load control of a Jeffcott rotor system in Herbst maneuvering flight. J Vib Control 1(1):1–14

    Google Scholar 

  12. Marx S, Nataraj C (2007) Suppression of base excitation of rotors on magnetic bearings. Int J Rotat Mach 1(1):1–10

    Article  Google Scholar 

  13. Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int Comput Sci Inst 12(1):1–16

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Brazilian Research Agencies FAPEMIG (APQ-307609) and CNPq (INCT-EIE—574001/2008-5) and also to CAPES for the financial support provided to this research effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Cavalini Jr..

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Appendix

Appendix

Equations (17) and (18) present the damping and stiffness matrices of the discs, respectively, obtained by considering the motion of the rotor base.

$${\mathbf{D}}_{d}^{*} = \left[ {\begin{array}{*{20}c} 0 & {2M_{D} \dot{\beta }_{s} } & 0 & 0 \\ { - 2M_{D} \dot{\beta }_{s} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {2\dot{\beta }_{s} I_{Dm} - \dot{\beta }_{s} I_{Dy} } \\ 0 & 0 & { - 2\dot{\beta }_{s} I_{Dm} + \dot{\beta }_{s} I_{Dy} } & 0 \\ \end{array} } \right]$$
(17)
$${\mathbf{K}}_{d}^{*} = \left[ {\begin{array}{*{20}c} { - M_{D} (\dot{\gamma }_{s}^{2} + \dot{\beta }_{s}^{2} )} & {M_{D} (\dot{\alpha }_{s} \dot{\gamma }_{s} + \ddot{\beta }_{s} )} & 0 & 0 \\ {M_{D} (\dot{\alpha }_{s} \dot{\gamma }_{s} - \ddot{\beta }_{s} )} & { - M_{D} (\dot{\alpha }_{s}^{2} + \dot{\beta }_{s}^{2} )} & 0 & 0 \\ 0 & 0 & {(I_{Dm} - I_{Dy} )(\dot{\gamma }_{s}^{2} - \dot{\beta }_{s}^{2} ) + I_{Dy} \dot{\beta }_{s} \varOmega } & {I_{Dy} \dot{\alpha }_{s} \dot{\gamma }_{s} + ( - \dot{\alpha }_{s} \dot{\gamma }_{s} + \ddot{\beta }_{s} )I_{Dm} } \\ 0 & 0 & {(\dot{\alpha }_{s} \dot{\gamma }_{s} + \ddot{\beta }_{s} )(I_{Dy} - I_{Dm} )} & {(I_{Dm} - I_{Dy} )(\dot{\alpha }_{s}^{2} - \dot{\beta }_{s}^{2} ) + I_{Dy} \dot{\beta }_{s} \varOmega } \\ \end{array} } \right]$$
(18)

in which I Dm  = (I Dx  + I Dz )/2.

Equations (19) and (20) present the damping and stiffness matrices of the shaft, respectively, obtained by considering the motion of the rotor base.

$${\mathbf{D}}_{s}^{*} = 2\rho (\dot{\beta }_{s} S{\mathbf{D}}_{1} + I_{m} \varOmega {\mathbf{D}}_{2} )$$
(19)
$${\mathbf{K}}_{s}^{*} = \rho S({\mathbf{K}}_{1} + \ddot{\beta }_{s} {\mathbf{D}}_{1} + \dot{\gamma }_{s} \dot{\alpha }_{s} {\mathbf{K}}_{2} ) + \rho I_{m} \left[ {{\mathbf{K}}_{3} - (\ddot{\beta }_{s} + \dot{\gamma }_{s} \dot{\alpha }_{s} ){\mathbf{M}}_{4} + 2\dot{\beta }_{s} (\dot{\beta }_{s} + \varOmega ){\mathbf{M}}_{2} } \right],$$
(20)

where M 2 and M 4, K 2, and D 1 are mass, stiffness and damping matrices, respectively, which depend only of the length L (see Fig. 4). The stiffness matrices K 1 and K 3 are also dependent on \(\dot{\alpha }_{s}\), \(\dot{\beta }_{s}\), and \(\dot{\gamma }_{s}\).

All these matrices and the ones common to the fixed base rotor can be seen in Duchemin [6].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, M.S., Del Claro, V.T.S., Cavalini, A.A. et al. Numerical investigation on the dynamic behavior of an onboard rotor system by using the FEM approach. J Braz. Soc. Mech. Sci. Eng. 39, 2447–2458 (2017). https://doi.org/10.1007/s40430-016-0640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0640-5

Keywords

Navigation