Skip to main content
Log in

Analysis of slug tracking model for gas–liquid flows in a pipe

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work focuses on the physical representativeness of slug tracking models. The numerical analyses are supported by a detailed experimental campaign in a horizontal test section with 900 pipe diameters long. The analyses address: (a) the model’s performance in predicting averaged slug flow properties, (b) the bubble overtaking mechanism and the slug flow sensitivity to the wake function, (c) the slug flow sensitivity to the slug insertion process, (d) the capture of the slug’s evolution in flows with distinct slug formation processes and (e) the inclusion of the advection term and the induced slug oscillations. The work presents a compressible, one-dimensional slug tracking model satisfying the mass and momentum equations. The equations are presented in a unified fashion to handle horizontal and inclined gas–liquid flows. The model embodies all terms introduced by the previous models and includes the advection term, so far neglected. The analyses, despite of being supported by the present numerical model, are not constrained to this model, but apply to slug tracking models in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Pipe cross-sectional area

C av :

Average coalescence rate

C 0 :

Drift flux parameter

C :

Drift flux parameter

f :

Slug frequency

Fr :

Froude number

g :

Gravity acceleration

h f :

Liquid film thickness

j :

Cell number

J :

Mixture superficial velocity

J L :

Liquid superficial velocity

J G :

Gas superficial velocity

L :

Pipe length

L f :

Liquid film length

L S :

Liquid slug length

\(\dot{m}\) :

Mass flow rate

R f :

Liquid film holdup

R S :

Liquid slug holdup

u d :

Dispersed bubble drift velocity

U b :

Gas-phase velocity within the slug

U f :

Liquid-phase velocity within the film

U G :

Gas velocity above the film

U S :

Liquid-phase velocity within slug

U M :

Mixture velocity

x :

Liquid slug front

y :

Bubble nose front

z :

Pipe axial coordinate

λ :

Liquid film interfacial angle

μ :

Dynamic viscosity

ξ :

Centroid coordinates

ρ :

Density

θ :

Pipe angle with the horizontal

σ :

Surface tension

τ :

Wall shear stress

G:

Gas phase

L:

Liquid phase

M:

Gas–liquid mixture

References

  1. Al-Safram EM, Taitel Y, Brill JP (2004) Prediction of slug length distribution along a hilly terrain pipeline using slug tracking model. J Energy Resour Technol 126:54–62

    Article  Google Scholar 

  2. Barnea D, Brauner N (1985) Holdup of the liquid slug in two phase intermittent flow. Int J Multiph Flow 11:43–49

    Article  Google Scholar 

  3. Barnea D, Taitel Y (1993) A model for slug length distribution in a gas–liquid slug flow. Int J Multiph Flow 19(5):829–838

    Article  MATH  Google Scholar 

  4. Bendiksen KH (1984) An experimental investigation of the motion of long bubbles in inclined tubes. Int J Multiph Flow 10:467–483

    Article  Google Scholar 

  5. Cook M, Behnia M (2000) Slug length prediction in near horizontal gas liquid intermittent flow. Chem Eng Sci 55:2009–2018

    Article  Google Scholar 

  6. Dukler AE, Hubbard MGA (1975) A model for liquid slug flow in horizontal and near horizontal tubes. Ind Eng Chem Fundam 14:337–347

    Article  Google Scholar 

  7. Fabre J, Liné A (1992) Modeling of two-phase slug flow. Annu Rev Fluid Mech 24:21–46

    Article  MATH  Google Scholar 

  8. Fagundes Netto JR, Fabre J, Peresson L (1999) Shape of long bubbles in horizontal slug flow. Int J Multiph Flow 25:1129–1160

  9. Fagundes Netto JR et al (1999) Dynamique de poches de gaz isolees en ecoulement permanent et non permanent horizontal. PhD thesis, Institut National Polytechnique de Toulouse (INPT)

  10. Gomez LE, Shoham O, Taitel Y (2000) Prediction of slug liquid holdup: horizontal to upward vertical tubes. Int J Multiph Flow 26:517–521

    Article  MATH  Google Scholar 

  11. Grenier P (1997) Evolution des longueurs de bouchons en écoulement intermittent horizontal. PhD thesis, Institut de Mécanique des Fluides de Toulouse, France

  12. Gregory GA, Nicholson MK, Aziz K (1978) Correlation of the liquid volume fraction in the slug for horizontal gas–liquid slug flow. Int J Multiph Flow 4:33–39

    Article  Google Scholar 

  13. Guet S, Decarre S, Henriot V, Liné A (2006) Void fraction in vertical gas–liquid slug flow: influence of liquid slug content. Chem Eng Sci 61:7336–7350

    Article  Google Scholar 

  14. Issa RI, Kempf MHW (2003) Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. Int J Multiph Flow 29:69–95

    Article  MATH  Google Scholar 

  15. Kjeldby TK, Henkes RAWM, Nydal OJ (2013) Lagrangian slug flow modeling and sensitivity on hydrodynamic slug initiation methods in a severe slugging case. Int J Multiph Flow 53:23–39

    Article  Google Scholar 

  16. Koskie JE, Mudawar I, Tiederman WG (1989) Parallel-wire probes for measurement of thick liquid films. Int J Multiph Flow 15:521–530

    Article  Google Scholar 

  17. Larsen M, Hustvedt E, Straume T (1997) PeTra: a novel computer code for simulation of slug flow. SPE annual technical conference and exhibition, San Antonio, Texas, 5–8 October

  18. Madani S, Caballina O, Souhar M (2009) Unsteady dynamics of Taylor bubble rising in vertical oscillating tubes. Int J Multiph Flow 35:363–375

    Article  Google Scholar 

  19. Malnes D (1982) Slug flow in vertical, horizontal and inclined pipes. Report IFE/KR/E-83/002 V Inst. for Energy Technology, Kjeller, Norway

  20. Marcano R, Chen XT, Sarica C, Brill JP (1998) A study of slug characteristics for two-phase horizontal flow. International petroleum conference and exhibition of Mexico, Villahermosa, 3–5 March

  21. Mazza RA, Rosa ES, Yoshizawa CJ (2010) Analyses of liquid film models applied to horizontal and near horizontal gas–liquid slug flows. Chem Eng Sci 65:3876–3892

    Article  Google Scholar 

  22. Moissis R, Griffith P (1962) Entrance effects in a two-phase slug flow. J Heat Transf 84:29–38

    Article  Google Scholar 

  23. Nydal OJ, Banerjee S (1996) Dynamic slug tracking simulations for gas–liquid flow in pipelines. Chem Eng Commun 141–142:13–39

    Article  Google Scholar 

  24. Nydal OJ, Pintus S, Andreussi P (1992) Statistical characterization of slug flow in horizontal pipes. Int J Multiph Flow 18:439–453

    Article  MATH  Google Scholar 

  25. Rodrigues HT (2009) Numerical simulation of slug flow employing a lagrangian tracking algorithm (in portuguese). Master thesis, Federal Technological University at Curitiba, Brazil

  26. Taitel Y, Barnea D (1998) Effect of gas compressibility on a slug tracking model. Chem Eng Sci 53:2089–2097

    Article  Google Scholar 

  27. Taitel Y, Barnea D (1990) Two-phase slug flow. In: Hartnett JP, Irvine TF Jr (eds) Advances in heat transfer. Elsevier, 20, pp 83–132

  28. Taitel Y, Barnea D (1990) A consistent approach for calculating pressure drop in inclined slug flow. Chem Eng Sci 45:1199–1206

    Article  Google Scholar 

  29. Ujang PM, Lawrence CJ, Hewitt GF (2006) Conservative incompressible slug tracking model for gas–liquid flow in a pipe. 5th BHRG North American conference on multiphase technology, Banff, Canada, May 31

  30. van Hout R, Shemer L, Barnea D (1992) Spatial distribution of void fraction within the liquid slug and some other related slug parameters. Int J Multiph Flow 18:831–845

    Article  MATH  Google Scholar 

  31. van Hout R, Shemer L, Barnea D (2003) Evolution of hydrodynamic and statistical parameters of gas–liquid slug flow along inclined pipes. Chem Eng Sci 58:115–133

    Article  MATH  Google Scholar 

  32. Viana F, Pardo R, Yánez R, Trallero JL, Joseph DD (2003) Universal correlation for the rise velocity of long gas bubbles in round pipes. J Fluid Mech 494:379–398

    Article  MATH  Google Scholar 

  33. Zheng G, Brill JP, Taitel Y (1994) Slug flow behavior in a hilly terrain pipeline. Int J Multiph Flow 20:63–79

    Article  MATH  Google Scholar 

  34. Wang X, Guo L, Zhang X (2006) Development of liquid slug length in gas–liquid slug flow along horizontal pipeline: experimental and simulation. Chinese J Chem Eng 14(5):626–633

Download references

Acknowledgments

The authors gratefully acknowledge the receipt of financial support from Petrobras. They also wish to thank to Dr Fagundes Netto from Petrobras for bringing the theme under our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Rosa.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, E.S., Mazza, R.A., Morales, R.E. et al. Analysis of slug tracking model for gas–liquid flows in a pipe. J Braz. Soc. Mech. Sci. Eng. 37, 1665–1686 (2015). https://doi.org/10.1007/s40430-015-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0331-7

Keywords

Navigation