Skip to main content

Advertisement

Log in

Forensic Implications of Kratom: Kratom Toxicity, Correlation with Mitragynine Concentrations, and Polypharmacy

  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Kratom, a preparation of the leaves collected from the Southeast Asian plant Mitragyna speciosa, has increased in use within the United States (US) predominantly due to its stimulant and opioid-like effects. It contains many active alkaloids, most notably mitragynine. Clinical pharmacological research and toxicological information are limited, hindering forensic interpretation and an understanding of the role kratom use may play in death. Despite arguments from some vocal proponents and vendors that kratom poses no risk to users, there is a growing body of evidence that kratom use can result in significant adverse events, including death.

Recent Findings

Toxicological data for blood specimens analyzed between January 2018 and September 2022 in postmortem and driving under the influence of drugs cases were reviewed for the presence of mitragynine, the primary alkaloid of Mitragyna speciosa. Reported blood mitragynine concentrations, compound positivity, and concomitant findings were evaluated.

Summary

The forensic interpretation of mitragynine continues to be challenging. Kratom has been implicated in an increasing number of overdoses and deaths, and its significance is difficult to ascertain due to a substantial number of confounding variables, including a limited scope of toxicological testing and frequent co-positivity with drugs of abuse. Mitragynine has been listed as the primary toxicological finding in several overdose deaths albeit at a lower frequency compared to overall positivity, particularly when present at elevated concentrations (> 1000 ng/mL); these cases provide forensic confirmation of harms due to kratom use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Han C, Schmitt J, Gilliland KM. DARK classics in chemical neuroscience: kratom. ACS Chem Neurosci. 2020;11(23):3870. https://doi.org/10.1021/acschemneuro.9b00535. This article is a good review on the chemical properties, pharmacology, and use of kratom.

    Article  CAS  Google Scholar 

  2. Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A, Bersani FS, Vicknasingam B, Piazzon G, Li JH, Yu WJ, Kapitány-Fövény M, Farkas J, Di Giannantonio M, Corazza O. Following “the roots” of kratom (Mitragyna speciosa): the evolution of an enhancer from a traditional use to increase work and productivity in Southeast Asia to a recreational psychoactive drug in Western countries. Biomed Res Int. 2015;2015:968786. https://doi.org/10.1155/2015/968786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eastlack SC, Cornett EM, Kaye AD. Kratom-pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther. 2020;9(1):55–69. https://doi.org/10.1007/s40122-020-00151-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prozialeck WC, Lamar PC, Krupp M 2nd, Moon M, Phelps LE, Grundmann O. Kratom use within the context of the evolving opioid crisis and the COVID-19 pandemic in the United States. Front Pharmacol. 2021;26(12):729220. https://doi.org/10.3389/fphar.2021.729220.

    Article  CAS  Google Scholar 

  5. Grundmann O. Patterns of kratom use and health impact in the US-results from an online survey. Drug Alcohol Depend. 2017;1(176):63–70. https://doi.org/10.1016/j.drugalcdep.2017.03.007.

    Article  Google Scholar 

  6. Garcia-Romeu A, Cox DJ, Smith KE, Dunn KE, Griffiths RR. Kratom (Mitragyna speciosa): user demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020;1(208):107849.

    Article  Google Scholar 

  7. Smith KE, Dunn KE, Rogers JM, Garcia-Romeu A, Strickland JC, Epstein DH. Assessment of kratom use disorder and withdrawal among an online convenience sample of US adults. J Addict Med. 2022;16(6):666–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: implications for products sold as kratom. J Ethnopharmacol. 2017;18(202):302–25. https://doi.org/10.1016/j.jep.2017.03.020.

    Article  CAS  Google Scholar 

  9. Sharma A, McCurdy CR. Assessing the therapeutic potential and toxicity of Mitragyna speciosa in opioid use disorder. Expert Opin Drug Metab Toxicol. 2021;17(3):255–7. https://doi.org/10.1080/17425255.2021.1853706.

    Article  CAS  PubMed  Google Scholar 

  10. •• Kruegel AC, Uprety R, Grinnell SG, Langreck C, Pekarskaya EA, Le Rouzic V, Ansonoff M, Gassaway MM, Pintar JE, Pasternak GW, Javitch JA, Majumdar S, Sames D. 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci. 2019;5(6):992–1001. https://doi.org/10.1021/acscentsci.9b00141. Demonstrating that 7-hydroxymitragynine is a metabolite of mitragynine and furthers our understanding of kratom’s effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology. 2018;134(Pt A):108–20. https://doi.org/10.1016/j.neuropharm.2017.08.026.

    Article  CAS  PubMed  Google Scholar 

  12. León F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, Kamble SH, Restrepo LF, Patel A, Gamez-Jimenez LR, Lopera-Londoño C, Hiranita T, Sharma A, Hampson AJ, Canal CE, McMahon LR, McCurdy CR. Activity of Mitragyna speciosa (“kratom”) alkaloids at serotonin receptors. J Med Chem. 2021;64(18):13510–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, Chear NJ, Ramanathan S, Sharma A, León F, Hiranita T, Avery BA, McMahon LR, McCurdy CR. Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of selected indole-based kratom alkaloids. J Med Chem. 2020;63(1):433–9.

    Article  CAS  PubMed  Google Scholar 

  14. •• Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, Hampson AJ, Sharma A, Avery BA, McMahon LR, McCurdy CR. Metabolism of a kratom alkaloid metabolite in human plasma increases its opioid potency and efficacy. ACS Pharmacol Transl Sci. 2020;3(6):1063–8. https://doi.org/10.1021/acsptsci.0c00075. This research of a mitragynine metabolite that is a potent MOR agonist could help explain kratom’s pharmacology and psychoactive properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with Mu agonism and delta antagonism, which do not recruit β-arrestin-2. J Med Chem. 2016;59(18):8381–97. https://doi.org/10.1021/acs.jmedchem.6b00748. An important paper on the MOR pharmacology of Mitragyna alkaloids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wade P. Bentuangie Kratom Strains & Their Effects [Internet]. Kratom.org. 2022. [cited 29 November 2022] Available from: kratom.org/strains/bentuangie

  17. Eggleston W, Stoppacher R, Suen K, Marraffa JM, Nelson LS. Kratom use and toxicities in the United States. Pharmacotherapy. 2019;39(7):775–7. https://doi.org/10.1002/phar.2280.

    Article  PubMed  Google Scholar 

  18. Leong Bin Abdullah MFI, Singh D. The adverse cardiovascular effects and cardiotoxicity of kratom (Mitragyna speciosa Korth.): a comprehensive review. Front Pharmacol. 2021;27(12):726003. https://doi.org/10.3389/fphar.2021.726003.

    Article  CAS  Google Scholar 

  19. Stringer J, Welsh C, Tommasello A. Methadone-associated Q-T interval prolongation and torsades de pointes. Am J Health Syst Pharm. 2009;66(9):825–33. https://doi.org/10.2146/ajhp070392.

    Article  CAS  PubMed  Google Scholar 

  20. Smith KE, Lawson T. Prevalence and motivations for kratom use in a specimen of substance users enrolled in a residential treatment program. Drug Alcohol Depend. 2017 Nov;1(180):340–8. https://doi.org/10.1016/j.drugalcdep.2017.08.034.

    Article  Google Scholar 

  21. Weiss ST, Douglas HE. Treatment of kratom withdrawal and dependence with buprenorphine/naloxone: a case series and systematic literature review. J Addict Med. 2021;15(2):167–72. https://doi.org/10.1097/ADM.0000000000000721.

    Article  PubMed  Google Scholar 

  22. Broyan VR, Brar JK, Allgaier Student T, Allgaier JT. Long-term buprenorphine treatment for kratom use disorder: a case series. Subst Abus. 2022;43(1):763–6.

    Article  CAS  PubMed  Google Scholar 

  23. Smith KE, Dunn KE, Epstein DH, Feldman JD, Garcia-Romeu A, Grundmann O, Henningfield JE, McCurdy CR, Rogers JM, Schriefer D, Singh D, Weiss ST. Need for clarity and context in case reports on kratom use, assessment, and intervention. Subst Abus. 2022;43(1):1221–4.

    Article  PubMed  Google Scholar 

  24. •• Papsun DM, Chan-Hosokawa A, Friederich L, Brower J, Graf K, Logan B. The trouble with kratom: analytical and interpretative issues involving mitragynine. J Anal Toxicol. 2019;43(8):615–29. https://doi.org/10.1093/jat/bkz064. This paper constitutes the largest dataset of mitragynine in forensic toxicology casework.

    Article  CAS  PubMed  Google Scholar 

  25. Bourgine J, Garnier-Jardin C, Chrétien B, Le Boisselier R, Loilier M, Lelong-Boulouard V, et al. Fatal intoxication with kratom: a case report. Toxicologie Analytique et Clin. 2019;31:S36–7.

    Article  Google Scholar 

  26. Wang C, Walker AE. Fatal mitragynine-associated toxicity in Canada: a case report and review of the literature. Acad Forensic Pathology. 2019;8:340–6. Case report with elevated mitragynine blood concentration and mitragynine is primarily implicated

    Article  Google Scholar 

  27. Matson M, Schenk N. Fatality of 33-year-old man involving kratom toxicity. J Forensic Sci. 2019;64:1933–5. Case report with elevated mitragynine blood concentration and mitragynine is primarily implicated

    Article  PubMed  Google Scholar 

  28. Mata DC, Andera KM. Case series: mitragynine blood and tissue concentrations in fatalities from 2017 to 2018 in Orange County, CA, USA. Forensic. Chemistry. 2020;17:100205. Case series of cases involving mitragynine with more detail

    CAS  Google Scholar 

  29. •• Gershman K, Timm K, Frank M, Lampi L, Melamed J, Gerona R, et al. Deaths in Colorado attributed to kratom. New England J Med. 2019;380:97–8. Case series of cases involving mitragynine with more detail

    Article  Google Scholar 

  30. Behonick GS, Vu C, Czarnecki L, El-Ters M, Shanks KG. Two single-drug fatal intoxications by mitragynine. J Anal Toxicol. 2022;46(5):e110–4. https://doi.org/10.1093/jat/bkac016. Case report with elevated mitragynine blood concentration and mitragynine is listed in COD

    Article  CAS  PubMed  Google Scholar 

  31. Trakulsrichai S, Sathirakul K, Auparakkitanon S, Krongvorakul J, Sueajai J, Noumjad N, et al. Pharmacokinetics of mitragynine in man. Drug Des, Dev Ther. 2015;9:2421–9. An important paper on one of the few pharmacokinetic studies of kratom use in humans

    CAS  Google Scholar 

  32. Grundmann O. Patterns of kratom use and health impact in the US-results from an online survey. Drug Alcohol Depend. 2017;1(176):63–70.

    Article  Google Scholar 

  33. Tanna RS, Nguyen JT, Hadi DL, Manwill PK, Flores-Bocanegra L, Layton ME, et al. Clinical pharmacokinetic assessment of Kratom (Mitragyna Speciosa), a botanical product with opioid-like effects, in healthy adult participants. Pharmaceutics. 2022;14:620. An important paper on one of the few pharmacokinetic studies of kratom use in humans

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chadchoy P, Sinchai T. The relationship between Mitragynine blood concentrations and death in Thailand. Interdiscip Res Rev. 2020;15:18–21. An important paper reporting blood mitragynine concentrations in non-pathological causes of death

    Google Scholar 

  35. Brower J. Mitragynine-only deaths in North Carolina. In: Society of Forensic Toxicologists Annual Conference. Society of Forensic Toxicologists; 2022.

    Google Scholar 

  36. Karinen R, Fosen JT, Rodge S, Vindenes V. An accidental poisoning with mitragynine. Forensic Sci Int. 2014;245:e29–232.

    Article  CAS  PubMed  Google Scholar 

  37. O’Malley Olsen E, O’Donnell J, Mattson CL, Schier JG, Wilson N. Unintentional drug overdose deaths with kratom detected – 27 states, July 2016-December 2017. Morbid Mortal Weekly Rep. 2019;68(14):326–7.

    Article  Google Scholar 

  38. •• Schmitt J, Bingham K, Knight L. Kratom-associated fatalities in northern Nevada – what mitragynine level is fatal? Am J Forensic Med Pathol. 2021;42(4):341–9. Case series of cases involving mitragynine with more detail

    Article  PubMed  Google Scholar 

  39. Basiliere S, Kerrigan S. Temperature and pH-dependent stability of mitragyna alkaloids. J Anal Toxicol. 2020;44:314–24. https://doi.org/10.1093/jat/bkz103.

    Article  CAS  PubMed  Google Scholar 

  40. Basiliere S, Brower J, Winecker R, Friederich L, Kerrigan S. Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry. Forensic Toxicol. 2020;38:420–35. https://doi.org/10.1007/s11419-020-00537-8.

    Article  CAS  Google Scholar 

  41. Nacca N, Schult RF, Li L, Spink DC, Ginsberg G, Navarette K, et al. Kratom adulterated with phenylethylamine and associated intracerebral hemorrhage: linking toxicologists and public health officials to identify dangerous adulterants. J Med Toxicol: Official J Am College Med Toxicol. 2020;16:71–4.

    Article  Google Scholar 

  42. Hoonwijit U, Waithum K, Tansrisawad N. Comparison of mitragynine stability in human blood in common blood collection tubes. Chulalongkorn Med J. 2020;64:439447.

    Google Scholar 

  43. Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, mitragyna speciosa. Chem Pharm Bull. 2004;52(8):916–28.

    Article  CAS  Google Scholar 

  44. Hanapi NA, Chear NJY, Azizi J, Yusof SR. Kratom alkaloids: interactions with enzymes. Front Pharmacol. 2021;17(12):751656.

    Article  Google Scholar 

  45. Henningfield JE, Rodricks JV, Manguson AM, Huestis MA. Respiratory effects of oral mitragynine and oxycodone in a rodent model. Psychopharmacology. 2022;239(12):3793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kapp F, Maurer H, Auwärter V, Winkemann M, Hermanns-Clausen M. Intrahepatic cholestasis following abuse of powdered kratom (mitragyna speciosa). J Med Toxicol. 2011;7:227–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nelsen JL, Lapoint J, Hodgman MJ. Seizure and coma following kratom (mitragynine speciosa korth) exposure. J Med Toxicol. 2020;6:424–6.

    Article  Google Scholar 

  48. Dorman C, Wong M, Khan A. Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology. 2015;61(3):1086–7.

    Article  PubMed  Google Scholar 

  49. Tayabeli K, Bolzon C, Foster P, Patel J, Kalim MO. Kratom: a dangerous player in the opioid crisis. J Community Hosp Intern Med Perspect. 2018;8(3):107–10.

    Article  Google Scholar 

  50. Afzal H, Esang M, Rahman S. A case of kratom-induced seizures. Cureus. 2020;12:e6588.

    PubMed  PubMed Central  Google Scholar 

  51. Ahmad J, Odin JA, Hayashi PH, Fontana RJ, Conjeevaram H, Avula B, et al. Liver injury associated with kratom, a popular opioid-like product: experience from the U.S. drug induced liver injury network and a review of the literature. Drug Alcohol Depend. 2021;1(218):108426. https://doi.org/10.1016/j.drugalcdep.2020.108426.

    Article  CAS  Google Scholar 

  52. Schimmel J, Dart RC. Kratom (Mitragyna Speciosa) liver injury: a comprehensive review. Drugs. 2020;80:263–83.

    Article  CAS  PubMed  Google Scholar 

  53. Singh D, Narayanan S, Müller CP, Swogger MT, Rahim AA, Leong Bin Abdullah MFI, et al. Severity of kratom (Mitragyna speciosa Korth.) psychological withdrawal symptoms. J Psychoact Drugs. 2018;50:445–50.

    Article  Google Scholar 

  54. Overbeek DL, Abraham J, Munzer BW. Kratom (Mitragynine) ingestion requiring naloxone reversal. Clin Pract Cases Emerg Med. 2019;3:24–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stanciu CN, Gnanasegaram SA, Ahmed S, Penders T. Kratom withdrawal: a systematic review with case series. J Psychoact Drugs. 2019;51:12–8.

    Article  Google Scholar 

  56. Assangkornchai S, Muekthong A, Sam-Angsri N, Pattanasttayawong U. The use of mitragynine speciosa (“krathom”), an addictive plant in Thailand. Subst Use Misuse. 2007;24(14):2145–57.

    Article  Google Scholar 

  57. McWhirter L, Morris S. A case report of inpatient detoxification after kratom (mitragyna speciosa) dependence. Eur Addict Res. 2010;16(4):229–31.

    Article  PubMed  Google Scholar 

  58. Cumpston KL, Carter M, Wills BK. Clinical outcomes after Kratom exposures: a poison center case series. Am J Emerg Med. 2018;36:166–8.

    Article  PubMed  Google Scholar 

  59. Post S, Spiller HA, Chounthirath T, Smith GA. Kratom exposures reported to United States poison control centers: 2011-2017. Clin Toxicol (Phil). 2019;57:847–54.

    Article  CAS  Google Scholar 

  60. •• Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, et al. Characteristics of deaths associated with kratom use. J Psychopharmacol (Oxford, England). 2019;33:1102–23. [High level review of mitragynine involvement in fatalities]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Papsun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papsun, D., Schroeder, W., Brower, J. et al. Forensic Implications of Kratom: Kratom Toxicity, Correlation with Mitragynine Concentrations, and Polypharmacy. Curr Addict Rep 10, 272–281 (2023). https://doi.org/10.1007/s40429-023-00477-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-023-00477-4

Keywords

Navigation