Skip to main content
Log in

Exploring the phytohormonal crosstalk during embryonic journey and germination process of Vateria indica L. seeds utilizing LCMS/MS technology

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Vateria indica L. is an endangered tree species indigenous to South Western-Ghats regions of India, which is of immense economic importance. The natural regeneration process of this species is hindered by many factors including seed recalcitrance, which is a major problem hindering its natural regeneration, thus posing a great challenge in its seed storage and conservation. Recalcitrant seeds show marked differences from orthodox seeds in development. The onset of different stages is marked by a definite peaking and lowering of phytohormones and this hormonal pattern varies in orthodox and recalcitrant seeds. Phytohormonal dynamics in recalcitrant seeds, is a poorly investigated area and the present investigation was undertaken with a view to understand the hormonal changes during embryogeny and germination in this recalcitrant species. We have tested fifteen plant growth regulators simultaneously to get a better understanding about their role in embryogeny and germination. During April–July 2020, seeds were collected from their native habitats in the South Western-Ghats. From the randomly selected seeds, the embryonic tissues were chopped and frozen for LC–MS/MS hormonal profiling. The triplet hormonal interplay (between auxin, cytokinin and gibberellins) was found to be very crucial for the development of the embryo in Vateria indica L. In the present study, we can see a clear antagonism of cis Jasmonate with Brassinosteroid, cis Jasmonate declining during seed shed (14.44 ± 0.39 ng g-1fw) and germination phases, while Brassinosteroid increasing during these phases (32.24 ± 1.69 ng g-1fw). A clear hormonal interplay can also be seen between Auxin (Indole-3 Butyric acid—45.44 ± 0.3 ng g-1fw) and Brassinosteroid (24epi-Brassinolide—32.24 ± 1.69 ng g-1fw) at the time of seed germination. Phytohormone interplay and crosstalk provides an emerging knowledge about connections between phytohormones which are pivotal for growth and development and even stress responses in plants.

Graphical abstract

Chromatogram of Phytohormones.

Chromatogram of Phytohormones -X axis represents time and Y axis represents absorbance A, B and C—In Negative mode (ES-): Salicylic acid, IAA, IBA, JA, Benzene Adenine, ABA, GA-7, GA-4, GA-3, Epibrassinolide. D, E and F—In Positive mode (ES +): ACC, Cis-Jasmonate, Zeatin, Methyl Jasmonate and Trans Zeatin Riboside.

Chromatogram of Phytohormones. X axis represents time and Y axis represents absorbance D and E—In Negative mode (ES-): Salicylic acid, IAA, IBA, JA, Benzene Adenine, ABA, GA-7, GA-4, GA-3, Epibrassinolide. I and J—In Positive mode (ES +): ACC, Cis-Jasmonate, Zeatin, Methyl Jasmonate and Trans Zeatin Riboside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

IAA:

Indole 3-acetic acid

IBA:

Indole 3-butyric acid

GA:

Gibberellic acid

BA:

Benzyl aminopurine

ABA:

Abscisic acid

tZ:

Trans zeatin

tZR:

Trans-zeatin riboside

JA:

Jasmonic acid

cisJ:

Cis-jasmone

MeJ:

Methyl Jasmonate

24epi-BL:

24Epi-brassinolide

ACC:

Amino cyclopropane-1-carboxylic acid

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release andmaintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488. https://doi.org/10.1007/s00425-004-1251-4

    Article  PubMed  CAS  Google Scholar 

  • Alshabi AM, Shaikh IA, Savant C (2020) Nootropic and neuroprotective effects of ethanol extract of Vateria indica L bark on scopolamine-induced cognitive deficit in mice. Trop J Pharm Res 9:587–594. https://doi.org/10.4314/tjpr.v19i3.19.ISSN1596-9827

    Article  Google Scholar 

  • Ashton P (1998) Vateria indica. The ICN Red List of Threatened Species 1998

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Bennett T, Scheres B (2010) Root development—two meristems for the price of one? Curr Top Dev Biol 91:67–102

    Article  PubMed  CAS  Google Scholar 

  • Blommaert KLJ (1954) Growth-and inhibiting-substances in relation to the rest period of the potato tuber. Nat 174:970–972. https://doi.org/10.1038/174970b0

    Article  ADS  CAS  Google Scholar 

  • Browse J, Howe GA (2008) Update on jasmonate signalling: new weapons and rapid response against insect attack. Plant Physiolo 146:832–838

    Article  CAS  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, ZhuY BH, Zhao H, Kuai B (2005) Loss of function mutations in Det2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Chandler JW (2009) Auxin as compere in plant hormone crosstalk. Planta 231:1–12

    Article  PubMed  CAS  Google Scholar 

  • Checker VG, Kushwaha H R, Kumari P, Yadav S (2018) Role of phytohormones in plant defense: signaling and cross talk. Molecular aspects of plant-pathogen interaction 159–184. doi. https://doi.org/10.1007/978-981-10-7371-7_7

  • Chen SY, Chien CT, Baskin JM, Baskin CC (2010) Storage behavior and changes in concentrations of Abscisic acid and gibberellins during dormancy breakand germination in the seeds of Phellodendron amurense var. wilsonii (Rutaceae). Tree Physiol 30:275–284. https://doi.org/10.1093/treephys/tpp111

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A et al (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Kermode YJ, AR, (2005) The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48. https://doi.org/10.1111/j.1365-313X.2005.02359.x

    Article  PubMed  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605. https://doi.org/10.1016/j.tplants.2012.05.012

    Article  PubMed  CAS  Google Scholar 

  • Corbineau F, Bagniol S, Come D (1990) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Isr J Bot 39:313–325

    CAS  Google Scholar 

  • Daviere JM, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20. https://doi.org/10.1016/j.molp.2015.09.011

    Article  PubMed  CAS  Google Scholar 

  • De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215

    Article  PubMed  Google Scholar 

  • Dhyani A, Barstow M (2020) Vateria indica. The IUCN Red List of Threatened Species 2020: e. T33029A115932674

  • Feurtado JA, Ambrose SJ, Cutler AJ, Ross AR, Abrams SR, Kermode AR (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218:630–639

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage W, Clay H (1994) Water relations of germination in the recalcitrant seed of Quercus robur L. Seed Sci Res 4:315–322. https://doi.org/10.1017/S096025850000235X

    Article  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Evol Syst 31:107–138. https://doi.org/10.1146/annurev.ecolsys.31.1.107

    Article  Google Scholar 

  • Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964

    Article  PubMed  CAS  Google Scholar 

  • Frick EM, Strader LC (2018) Roles for IBA-derived auxin in plant development. J Exp Bot 69:169–177. https://doi.org/10.1093/jxb/erx298

    Article  PubMed  CAS  Google Scholar 

  • Gfeller A, Liechi R, Farmer E (2010) Arabidopsis jasmonate signalling pathway. Sci. Signaling 3: cm4-cm4. https://doi.org/10.1126/scisignal.3109cm4

  • Gimeno-Gilles C, Lelievre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A (2009) ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant 2:108–119. https://doi.org/10.1093/mp/ssn092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffen GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nat 281:216–217

    Article  ADS  CAS  Google Scholar 

  • Hao J, Yin Y, Fei SZ (2013) Brassinosteroid signalling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030. https://doi.org/10.1007/s00299-013-1438

    Article  PubMed  CAS  Google Scholar 

  • He Q, Zhao S, Ma Q (2014) Endogenous salicylic acid levels and signalling positively regulate Arabidopsis response to polyethylene glycol-simulated drought stress. J Plant Growth Regul 3:871–880. https://doi.org/10.1007/s00344-014-9438

    Article  Google Scholar 

  • Heinrich M, Hettenhausen C, Lange T, Wuensche H, Fang J, Baldwin IT (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J Cell Mol Biol 73:591–606. https://doi.org/10.1111/tpj.12058

    Article  CAS  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B (2007) 1-amynocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060. https://doi.org/10.1093/jxb/erm162

    Article  PubMed  CAS  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signalling via competitive binding to JAZs. Dev Cell 19:884–894. https://doi.org/10.1016/j.devcel.2010.10.024

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Ding L, Yu H (2013) Crosstalk between GA and JA signalling mediates plant growth and defence. Plant Cell Rep 32:1067–1074. https://doi.org/10.1007/s00299-013-1423-4

    Article  PubMed  CAS  Google Scholar 

  • Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT et al (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    Article  ADS  Google Scholar 

  • Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102. https://doi.org/10.1093/aob/mcs240

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar S, Ayyappan N, Muthuramkumar S, Rajarathinam K (2014) Diversity and distribution of ethnomedicinal tree species from central Western Ghats. J Basic Appl Biol 8:72–79

    Google Scholar 

  • Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S et al (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karssen CM, Brinkhorst-Van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    Article  PubMed  CAS  Google Scholar 

  • Kermode AR (2005) Role of ABA in seed dormancy. J Plant Growth Regul 24:319–344

    Article  CAS  Google Scholar 

  • Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555. https://doi.org/10.1093/jxb/ert080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signalling pathways in pathogen defence. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T et al (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M et al (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213:758–763

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G (2006) Hormonal interactions during seed dormancy release and germination. In: Basra AS (ed) Handbook of seed science and technology. Food Products Press, New York, pp 303–334

    Google Scholar 

  • Lewak S (2011) Metabolic control of embryonic dormancy in apple seed: seven decades of research. Acta Physiol Plant 33:1–24

    Article  CAS  Google Scholar 

  • Linkies A, Muulle K, Morris K, Tureckova V, Wenk M, Cadman CS et al (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signalling pathways. Front Plant Sci 9:251. https://doi.org/10.3389/fpls.2018.00251

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller J, Epstein E (1991) Occurrence and in vivo biosynthesis of indole-3-butyric acid in corn (Zea mays L.). Plant Physiol 97:765–770. https://doi.org/10.1104/pp.97.2.765

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller J, Sass S, Sutter EG, Wodner M, Epstein E (1993) Indole-3-butyric acid in Arabidopsis thaliana. Plant Growth Regul 13:179–187. https://doi.org/10.1007/BF00024260

    Article  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol 39: 23–52. https://doi.org/10.1146/annurev.pp.39.060188.000323

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99(110–112):1. https://doi.org/10.1016/j.envexpbot.2013.11.005

    Article  CAS  Google Scholar 

  • Mishima S, Matsumoto K, Futamura Y, Araki Y, Ito T, Tanaka T, Iinuma M, Nozawa Y, Akao Y (2003) Antitumor effect of stilbenoids from Vateria indica against allografted sarcoma S-180 in animal model. J Exp Ther Oncol 3:283–288. https://doi.org/10.1111/j.1533-869x.2003.01102.x.PMID14696625

    Article  PubMed  CAS  Google Scholar 

  • Moubayidin L, Perilli S, Ioio RD, Di Mambro R, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nat 453:1094–1101

    Article  ADS  Google Scholar 

  • Mustenko LI, Berestetsky VA, Vendenicheva NP (1995) Phytohormones and structure of cells of Acer saccharinum seed embryo. Biol Plant 37: 553- 559. https://doi.org/10.100/BF02908837

  • Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y (1998) Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Anal Sci 14:691–698

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 49:88–95

    Article  Google Scholar 

  • Nonogaki H, Chen F, Bradford KJ (2008) 11 Mechanisms and genes involved in germination sensu stricto. Annu Plant Rev 27: Seed development, dormancy and germination 264

  • ÖZDEN E, (2022) Imbibition-induced changes in cell membrane on germination and some physiological parameters in aged cress (Lepidium sativum L.) seeds. Turk J Agric for 46:453–465

    Article  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochem 69:1773–1781

    Article  CAS  Google Scholar 

  • Pence VC (1992) Desiccation and the survival of Aesculus, Castanea, and Quercus embryo axes through cryopreservation. Cryobiology 29:391–399

    Article  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  PubMed  CAS  Google Scholar 

  • Petruzzelli L, Coraggio I, Leubner-Metzger G (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1 aminocyclopropane-1-carboxylic acid oxidase. Planta 211:144–149. https://doi.org/10.1007/s004250000274

    Article  PubMed  CAS  Google Scholar 

  • Petruzzelli L, Muller K, Hermann K, Leubner-Metzger G (2003) Distinct expression patterns of β-1, 3-glucanases and chitinases during the germination of Solanaceous seeds. Seed Sci Res 13:139–153

    Article  CAS  Google Scholar 

  • Pharis K (1985) Gibberellins and Reproductive Development in Seed Plants. Annu Rev Plant Physiol 36:517–568. https://doi.org/10.1146/annurev.pp.36.060185.002505

    Article  CAS  Google Scholar 

  • Pieruzzi FP, Dias LL, Balbuena TS, Santa-Catarina C, Floh SALD, EI, (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quesnelle PE, Emery RN (2007) cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Botany 85:91–103

    Google Scholar 

  • Ranjan R, Lewak S (1992) Jasmonic acid promotes germination and lipase activity in non-stratified apple embryos. Physiol Plant 86:335–339

    Article  CAS  Google Scholar 

  • Rao G, Kumar GN, Herbert M (2019) Effect of injection pressure on the performance and emission characteristics of the CI engine using Vateria indica biodiesel. Int J Ambient Energy 40:758–767

    Article  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJ (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373

    Article  CAS  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defense, and leaf senescence. The FEBS J 276:4666–4681. https://doi.org/10.1111/j.1742-4658.2009.07193.x

    Article  PubMed  CAS  Google Scholar 

  • Reinecke DM, Bandurski RS (1987) Auxin Biosynthesis and Metabolism In: Plant Hormones and their Role in Plant Growth and Development. [Davies PT (eds)]. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_3

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  PubMed  CAS  Google Scholar 

  • Romero-Rodriguez MC, Archidona-Yuste A, Abril N, Gil-Serrano AM, Meijon M, Jorrín-Novo JV (2018) Germination and Early Seedling Developmentin Quercus ilex Recalcitrant and Non-dormant Seeds: Targeted Transcriptional, Hormonal, and Sugar Analysis. Front Plant Sci 9(1–14):1508. https://doi.org/10.3389/fpls.2018.01508

    Article  PubMed  PubMed Central  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307. https://doi.org/10.1038/nchembio.16

    Article  PubMed  CAS  Google Scholar 

  • Sasse J, Simon S, Gubeli C (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Bio.l 25: 647–655. https://doi.org/10.1016/j.cub.2015.01.015*

  • Schopfer P, Plachy C (1984) Control of seed germination by abscisic acid. Plant Physiol 76: 155–160. https://doi.org/10.1104/pp.76.1.155

  • Shu K, Liu X, Xie Q, He Z (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45. https://doi.org/10.1016/j.MOLP.2015.08.010

    Article  PubMed  CAS  Google Scholar 

  • Sinu PA, Shivanna KR (2016) Factors affecting recruitment of a critically-endangered dipterocarp species, Vateria indica in the Western Ghats, India. Proc Nat Acad Sci India Sect b Biol Sci 86:857–862. https://doi.org/10.1007/s40011-015-0535-8

    Article  Google Scholar 

  • Smolenska G, Lewak S (1974) The role of lipases in the germination of dormant apple embryos. Planta 116:361–370

    Article  PubMed  CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin crosstalk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthetic enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

    Article  PubMed  CAS  Google Scholar 

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385. https://doi.org/10.1104/pp.107.113738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297–306. https://doi.org/10.1016/J.CRVI.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U et al (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Enviro Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Valpuesta V, Quesada MA, Sanchez-Roldan C (1989) Changes in indole -3-acetic acid oxidase and peroxidase isoenzymes in the seeds of developing peach fruits. J Plant Growth Regul 8:255–261. https://doi.org/10.1007/BF0202181

    Article  CAS  Google Scholar 

  • Van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y (2011) Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 68:249–261

    Article  PubMed  CAS  Google Scholar 

  • Weyers JD, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    Article  PubMed  CAS  Google Scholar 

  • White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijers D, Jurgens G (2005) Auxin and embryo axis formation the ends in sight? Current Opinions Plant Biol 8:2–7

    Google Scholar 

  • Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D et al (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang DL, Yao J, Mei CS (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signalling cascade. PNAS USA 109:E1192-1200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong JW, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GPG and KGAK has designed the study and supervised the experiments. KVB has assisted in statistical analysis of the data. JBH has helped in seed collection and LCMS/MS studies. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to G. P. Gayatri.

Ethics declarations

Conflict interest

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayatri, G.P., Kumar, K.G.A., Baiju, K.V. et al. Exploring the phytohormonal crosstalk during embryonic journey and germination process of Vateria indica L. seeds utilizing LCMS/MS technology. Braz. J. Bot (2024). https://doi.org/10.1007/s40415-024-00987-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40415-024-00987-z

Keywords

Navigation