Skip to main content
Log in

Connectivity value of Atlantic forest fragments: pathways towards enhancing biodiversity conservation

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

An accurate combination of remote sensing-based techniques with predictive modeling is critical to evaluate the effects of fragmentation on forest fragments’ connectivity. Our study aimed to classify the landscape and evaluate its ecology in a highly fragmented region within the Atlantic Forest. We combined satellite image-based data, and spatial data of a region in Southern Brazil with Random Forest (RF) supervised algorithms. Using this combination, we defined the land use and native forest classes and estimated landscape metrics. Overall, native forest fragments varied widely, especially regarding their areas (ha), shape, and the number of core areas. Among all fragments, the one in the Rio Doce State Forest Park (PERD) holds the largest area, most regular shape, and the highest number of core habitats in the study region. However, most (64.4%) of the fragments, especially the small ones (< 0.4 hectares), are close to each other (i.e., average distances up 100 m). Our findings demonstrate that the closely connected fragments may be potential candidates to enhance forest connectivity, and support ecological restoration plans in the study region. Further, we indicated that fragments like the PERD Park are a conservation priority due to their importance in connecting smaller fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in this publication comes from public and open sources that provide geoprocessed data (see details in the section Material and Methods). Therefore, no data is shared in repositories.

References

  • Almeida A, Marques MC, Fátima CVM, Vicente-Silva J, Mikich SB (2016) Limited effectiveness of artificial bird perches for the establishment of seedlings and the restoration of Brazil’s Atlantic Forest. J Nat Conserv 34:24–32

    Article  Google Scholar 

  • Alves F, López-Iborra GM, Silveira LF (2017a) Population size assessment of the Endangered red-billed curassow Crax blumenbachii: accounting for variation in detectability and sex-biased estimates. Oryx 51:137–145

    Article  Google Scholar 

  • Alves F, López-Iborra GM, Stojanovic D, Silveira LF (2017b) Habitat selection by the endangered Red-billed Curassow (Crax blumenbachii) in an Atlantic forest remnant. Emu - Austral Ornithology 117:316–324

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Cavender-Bares J, Escobar F, Melo FPL, Tabarelli M, Santos BA (2012) Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J Ecol 100:702–711

    Article  Google Scholar 

  • Awade M, Metzger JP (2008) Using gap - crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation. Austral Ecol 33:863–871

    Article  Google Scholar 

  • Azeredo R, Simpson J (2004) A reprodução em cativeiro do mutum-do-sudeste e os programas de reintrodução realizados pela CRAX. In: IBAMA/MMA (ed.) Plano de Ação para a conservação do mutum-do-sudeste Crax blumenbachii – uma espécie bandeira para a conservação da Mata Atlântica. IBAMA/MMA., Brasília, pp 37–50

  • Bełcik M, Lenda M, Amano T, Skórka P (2020) Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation. Sci Rep 10:20320

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • BirdLife International (2016) Crax blumenbachii. The IUCN Red List of Threatened Species 2016: e.T22678544A92777952. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678544A92777952.en. Accessed 17 February 2023

  • BirdLife International (2023) IUCN Red List for birds. Downloaded from http://datazone.birdlife.org. Accessed 13 October 2023

  • Bivand R, Keitt T, Rowlingson B (2019) rgdal: Bindings for the “Geospatial” Data Abstraction Library. R package 1.4–8

  • Boscolo D, Candia-Gallardo C, Awade M, Metzger JP (2008) Importance of inter-habitat gaps and stepping-stones for lesser woodcreepers (Xiphorhynchus fuscus) in the Atlantic Forest, Brazil. Biotropica 40:273–276

    Article  Google Scholar 

  • Bovo AAA, Ferraz KMPMB, Magioli M et al (2018) Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in Tropical Forest. Perspect Ecol Conserv 16:90–96

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  • Broadie JF, Williams S, Garner B (2021) The decline of mammal functional and evolutionary diversity worldwide. PNAS - Proc Natl Acad Sci USA 118:e1921849118

    Article  Google Scholar 

  • Cäsar C, Oliveira LC, Câmara T (2020) Plano de ação para conservação da biodiversidade terrestre do Rio Doce. Fundação Renova e Bicho do Mato – Instituo de Pesquisa, Belo Horizonte

  • CENIBRA (2019) RPPN – Fazenda Macedônia. https://www.cenibra.com.br/rppn-fazenda-macedonia/. Accessed 27 February 2023

  • Clarke AL, Sæther BE, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 79:429–438

    Article  ADS  Google Scholar 

  • Cornelius C, Awade M, Cândia-Gallardo C, Sieving KE, Metzger JP (2017) Habitat fragmentation drives inter-population variation in dispersal behavior in a Neotropical rainforest bird. Perspect Ecol Conserv 15:3–9

    Google Scholar 

  • Cristiano PM, Madanes N, Campanello PI et al (2014) High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature. Forests 5:287–308

    Article  Google Scholar 

  • Culot L, Bello C, Batista JLF, Couto HTZ, Galetti M (2017) Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci Rep 7:7662

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Delacour J, Amadon J (2004) Curassows and related birds. Second Edition. Lynx Edicions and American Museum of Natural History, Barcelona and New York

  • Dillon WW, Lieurance D, Hiatt DT, Clay K, Flory SL (2018) Native and invasive woody species differentially respond to forest edges and forest successional age. Forests 9:381

    Article  Google Scholar 

  • Diniz ES, Lorenzon AS, Castro NLM, Marcatti GE, Santos OP, Deus Júnior JC, Cavalcante RBL, Fernandes-Filho EI, Amaral CH (2021) Forecasting frost risk in forest plantations by the combination of spatial data and machine learning algorithms. Agric for Meteorol 306:108450

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  ADS  Google Scholar 

  • Eisavi V, HomayounI S, Yazdi AM, Alimohammadi A (2015) Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environ Monit Assess 187:291

    Article  PubMed  Google Scholar 

  • Elhadi A, Onisimo M, John O, Elfatih MAR (2014) Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int J Remote Sens 35:3440–3458

    Article  Google Scholar 

  • ESRI. (2016) ArcMap (version 10.5.1). Software. Redlands, CA, Esri Inc.

  • Ewers RM, Didham RK (2007) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol 21:926–936

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • FAO (2020) Global forest resources assessment. Main report Rome, Rome, p 186

    Google Scholar 

  • Farina A (2006) Principles and methods in Landscape Ecology: toward a Science of Landscape. Springer, Dordrecht

    Google Scholar 

  • Fernandes GW, Goulart FF, Ranieri BD et al (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat Conserv 14:35–45

    Article  Google Scholar 

  • Fonseca CR, Ganade G, Baldissera R et al (2009) Towards an ecologically-sustainable forestry in the Atlantic Forest. Biol Conserv 142:1209–1219

    Article  Google Scholar 

  • Fontoura SB, Ganade G, Larocca J (2006) Changes in plant community diversity and composition across an edge between Araucaria forest and pasture in South Brazil. Braz J Bot 29:79–91

    Article  Google Scholar 

  • Forman RTT (1997) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, New

    Google Scholar 

  • Gabriel FA, Ferreira AD, Queiroz HM, Vasconcelos ALS, Ferreira TO, Bernardino AF (2021) Long-term contamination of the Rio Doce estuary as a result of Brazil’s largest environmental disaster. Perspect Ecol Conserv 19:417–428

    Google Scholar 

  • Garrard GE, McCarthy MA, Vesk PA, Radford JQ, Bennett AF (2011) A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J Anim Ecol 81:14–23

    Article  PubMed  Google Scholar 

  • Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  ADS  CAS  PubMed  Google Scholar 

  • Giri CO (2020) Remote sensing of land use and land cover: principles and applications. CRC PRESS, Boca Raton

    Google Scholar 

  • Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol 7:101–110

    Article  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Hansen A, di Castri F (1992) Landscape boundaries. Springer, New York

    Book  Google Scholar 

  • Hatfield JH, Barlow J, Joly CA, Lees AC, Parruco CHDF, Tobias JA, Orme CDL, Banks-Leite C (2020) Mediation of area and edge effects in forest fragments by adjacent land use. Conserv Biol 34:395–404

    Article  PubMed  Google Scholar 

  • Hijmans RJ (2019) raster: Geographic data analysis and modeling. R package version 3.0–7

  • Hill JL, Curran PJ (2005) Fragment shape and tree species composition in tropical forests: a landscape level investigation. Afr J Ecol 43:35–43

    Article  Google Scholar 

  • Hulshoff RM (1995) Landscape indices describing a Dutch landscape. Landscape Ecol 10:101–111

    Article  Google Scholar 

  • Jesus S, Pedro WA, Bispo AA (2018) Bird diversity along a gradient of fragmented habitats of the Cerrado. Anais da Academia Brasileira de. An Acad Bras Cienc 90:123–135

    Article  PubMed  Google Scholar 

  • Jin Y, Liu X, Chen Y, Liang X (2018) Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong. Int J Remote Sens 39:8703–8723

    Article  Google Scholar 

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473

    Article  PubMed  Google Scholar 

  • Köppen W (1931) Climatologia. México, Fundo de Cultura Econômica

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26

    Article  Google Scholar 

  • Kuhn M (2020) caret: Classification and Regression Training. R package version 6.0–85

  • Leclère D, Obersteiner M, Barrett M et al (2020) Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585:551–556

    Article  ADS  PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2:18–22

    Google Scholar 

  • Lima RAF, Oliveira AA, Pitta GR et al (2020) The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat Commun 11:6347

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JP (2012a) Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest. J Appl Ecol 49:1325–1333

    Article  Google Scholar 

  • Lira PK, Tambosi LR, Ewers RM, Metzger JP (2012b) Land-use and land-cover change in Atlantic Forest landscapes. For Ecol Manage 278:80–89

    Article  Google Scholar 

  • Luther DA, Cooper WJ, Wolfe JD, Bierregaard RO Jr, Gonzalez A, Lovejoy TE (2020) Tropical forest fragmentation and isolation: is community decay a random process? Glob Ecol Conserv 23:e1168

    Google Scholar 

  • Magnago LFS, Magrach A, Barlow J, Schaefer CEGR, Laurance WF, Martins SV, Edwards DP (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol 31:542–552

    Article  Google Scholar 

  • Marques CM, Grelle CE (2021) The Atlantic Forest History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Cham, Springer

  • Martensen AC, Pimentel RG, Metzger JP (2008) Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: implications for conservation. Biol Conserv 141:2184–2192

    Article  Google Scholar 

  • Martinuzzi S, Gould WA, Vierling LA, Hudak AT, Nelson RF, Evans JS (2013) Quantifying tropical dry forest type and succession: substantial improvement with LiDAR. Biotropica 45:135–146

    Article  Google Scholar 

  • McGarigal K (2015) FRAGSTATS Help. University of Massachusetts, Amherst

    Google Scholar 

  • Metzger JP (2000) Tree functional group richness and spatial structure in a tropical fragmented landscape (SE Brazil). Ecol Appl 10:1147–1161

    Article  Google Scholar 

  • Nguyen HTT, Doan TM, Tomppo E, McRoberts RE (2020) Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods-a case study from Dak Nong. Vietnam Remote Sens 12:e1367

    Article  ADS  Google Scholar 

  • O’Farrell PJ, Anderson PM (2010) Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ Sustain 2:59–65

    Article  Google Scholar 

  • Omachi CY, Siani SM, Chagas FM et al (2018) Atlantic Forest loss caused by the world´ s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sens Appl 12:30–34

    Google Scholar 

  • Pires AP, Rezende CL, Assad ED, Loyola R, Scarano FR (2017) Forest restoration can increase the Rio Doce watershed resilience. Perspect Ecol Conserv 15:187–193

    Google Scholar 

  • Pittman K, Hansen MC, Becker-Reshef I, Potapov PV, Justice CO (2010) Estimating global cropland extent with multi-Year MODIS Data. Remote Sens 2:1844–1863

    Article  ADS  Google Scholar 

  • Pizo MA, Santos BTP (2011) Frugivory, post-feeding flights of frugivorous birds and the movement of seeds in a brazilian fragmented landscape. Biotropica 43:335–342

    Article  Google Scholar 

  • Pöpperl F, Seidl R (2021) Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 12:e03692. https://doi.org/10.1002/ecs2.3692

    Article  Google Scholar 

  • QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project Version 3:12

    Google Scholar 

  • R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro SMC, Rajão R, Nunes F et al (2020) A spatially explicit index for mapping Forest Restoration Vocation (FRV) at the landscape scale: application in the Rio Doce basin. Brazil Sci Total Environ 744:140647

    Article  Google Scholar 

  • Rogan JE, Lacher TE (2018) Impacts of habitat loss and fragmentation on terrestrial biodiversity. Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Rother DC, Pizo MA, Jordano P (2016) Variation in seed dispersal effectiveness: the redundancy of consequences in diversified tropical frugivore assemblages. Oikos 125:336–342

    Article  ADS  Google Scholar 

  • Rufino MPMX, Torres CMME, Melo FB et al (2023) Floristic composition and dispersal syndrome: how can environmental factors affect the Cracidae refuge in a secondary Atlantic Forest fragment? Trees for People 11:100374. https://doi.org/10.1016/j.tfp.2023.100374

    Article  Google Scholar 

  • Sales Rosa JC, Campos PBR, Nascimento CB, Souza BA, Valetich R, Sánchez LE (2022) Enhancing ecological connectivity through biodiversity offsets to mitigate impacts on habitats of large mammals in tropical forest environments. Impact Assess Proj Apprais. https://doi.org/10.1080/14615517.2022.2090086

    Article  Google Scholar 

  • Sarmento-Soares LM, Martins-Pinheiro RF, Casagranda MD (2022) Endemicity analysis of the Ichtyofauna of the Rio Doce Basin. Southeastern Brazil an Acad Bras Cienc 94:e20210646

    Article  PubMed  Google Scholar 

  • Sesnie SE, Gessler PE, Finegan B, Thessler S (2008) Integrating landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens Environ 112:2145–2159

    Article  ADS  Google Scholar 

  • Seymour F, Harris NL (2019) Reducing tropical deforestation. Science 365:756–757

    Article  ADS  CAS  PubMed  Google Scholar 

  • Smith AL, Hodkinson TR, Villellas J et al (2020) Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc Natl Acad Sci 117:4218–4227

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sothe C, Almeida CM, Liesenberg V, Schimalski MB (2017) Evaluating sentinel-2 and landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens 9:838

    Article  ADS  Google Scholar 

  • Souza AL, Boina A, Soares CPB, Vital BR, Gaspar RO, Lana JM (2011) Estoque e crescimento em volume, biomassa, carbono e dióxido de carbono em Floresta Estacional Semidecidual. Rev Árvore 35:1277–1285

    Article  Google Scholar 

  • Souza AL, Boina A, Soares CPB, Vital BR, Gaspar RO, Lana JM (2012) Estrutura fitossociológica, estoques de volume, biomassa, carbono e dióxido de carbono em Floresta Estacional Semidecidual. Rev Árvore 36:169–179

    Article  Google Scholar 

  • Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2009) Plantas da floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • UN (2015) Transforming our world: the 2030 Agenda for Sustainable Development. United Nations

  • Vegh L, Tsuyuzaki S (2021) Remote sensing of forest diversities: the effect of image resolution and spectral plot extent. Int J Remote Sens 42:5985–6002

    Article  Google Scholar 

  • Wang R, Gamon JA, Montgomery RA et al (2016) Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek). Remote Sensing 8:128. https://doi.org/10.3390/rs8020128

    Article  ADS  Google Scholar 

  • Wilkinson DA, Marshall JC, French NP, Hayman DTS (2018) Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface 15:0180403

    Article  Google Scholar 

  • Xie Z, Chen Y, Lu D, Li G, Chen E (2019) Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo. Data Remote Sens 11:164. https://doi.org/10.3390/rs11020164

    Article  ADS  Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens 2017:1–18

    Article  CAS  Google Scholar 

  • Zambrano J, Cordeiro NJ, Garzon-Lopez C et al (2020) Investigating the direct and indirect effects of forest fragmentation on plant functional diversity. PLoS ONE 15:e0235210. https://doi.org/10.1371/journal.pone.0235210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanella L, Folkard AM, Blackburn GA, Carvalho LMT (2017) How well does random forest analysis model deforestation and forest fragmentation in the Brazilian Atlantic forest. Environ Ecol Stat 24:529–549

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Engenharia Florestal of the Universidade Federal de Viçosa for providing accurate computational processors for the analysis and Cenbira—Celulose Nipo-Brasileira S.A for providing the necessary support to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

ESD Methodology, Validation, Formal analysis, Investigation, Visualization, Writing—original draft, Writing—review andamp; editing. PHSM Methodology, Formal analysis. JPR: Formal analysis. WSC Project administration, Data curation; EVP Project administration; JML Project administration; GBL Project administration, Data curation; CHA Conceptualization, Validation, Supervision, Funding acquisition, Project administration, Writing—review and editing.

Corresponding author

Correspondence to Écio Souza Diniz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, É.S., Mota, P.H.S., Reis, J.P. et al. Connectivity value of Atlantic forest fragments: pathways towards enhancing biodiversity conservation. Braz. J. Bot 47, 249–259 (2024). https://doi.org/10.1007/s40415-023-00970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00970-0

Keywords

Navigation