Skip to main content
Log in

CMA band variability and physical mapping of 5S and 45S rDNA sites in Brazilian Cactaceae: Pereskioideae and Opuntioideae

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Representatives of the Cactaceae subfamilies Pereskioideae and Opuntioideae from northeastern Brazil were studied using banding with the fluorochromes, CMA3 and DAPI, as well as with fluorescent in situ hybridization using 45S and 5S rDNA probes to identify the distributions of their heterochromatin and rDNA sites. Pereskia aculeata, P. bahiensis, P. grandifolia (Pereskioideae), Brasilopuntia brasiliensis, Tacinga funalis, and T. palmadora showed 2n = 22, while Opuntia dillenii showed 2n = 44, and O. ficus-indica 2n = 88. The karyotypes of all of the species were symmetric, with average chromosome lengths varying from 1.94 µm in O. dillenii to 3.17 µm in P. aculeata. One pair of terminal CMA+ bands corresponding to NORs occurred in all of the diploid cytotypes (except O. ficus-indica, which has two pairs of terminal CMA+ bands) as well as in O. dillenii (tetraploid). CMA+ bands were also observed in the interstitial region of the long arm of a chromosome pair in B. brasiliensis, while a number of variable proximal bands were observed on three chromosome pairs in O. dillenii and on most of the chromosomes of O. ficus-indica. The 45S rDNA sites corresponded to the terminal CMA+ bands, while the 5S rDNA sites were located in the interstitial regions of the long arms of the chromosome pairs of P. aculeata, P. bahiensis, P. grandifolia, and B. brasiliensis. Our data, and earlier publications, suggest that the subfamily Opuntioideae can be characterized as having proximal/interstitial CMA+ heterochromatin in at least one chromosome pair (except in Tacinga). The absence of proximal heterochromatic bands, however, appears to be a synapomorphy of the basal lineages of Cactaceae (subfamily Pereskioideae + Maihuenioideae), suggesting that karyotypes with heterochromatin restricted to the terminal region of a chromosome pair (45S rDNA) represent a plesiomorphic character of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–6
Figs. 7–13
Fig. 14

Similar content being viewed by others

References

  • Anderson EF (2001) The Cactus family. Timber Press, Portland

  • Ansari HA, Ellison NW, Reader SM, Badaeva ED, Friebe B, Miller TE, Williams WM (1999) Molecular cytogenetic organization of 5S and 18S-26S rDNA loci in white clover (Trifolium repens L.) and related species. Ann Bot 83:199–206

    Article  CAS  Google Scholar 

  • Baker MA, Rebman JP, Parfitt BD, Pinkava DJ, Zimmerman AD (2009) Chromosome numbers in some cacti of Western North America-VIII. Haseltonia 15:117–134

    Article  Google Scholar 

  • Bandyopadhyay B, Sharma A (2000) The use of multivariate analysis of karyotypes to determine relationships between species of Opuntia. Caryologia 53:121–126

    Article  Google Scholar 

  • Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489

    Article  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  CAS  PubMed  Google Scholar 

  • Carvalho R, Soares Filho WS, Brasileiro-Vidal AC, Guerra M (2005) The relationships among lemons, limes and citron: a chromosomal comparison. Cytogenet Genome Res 109:276–282

    Article  CAS  PubMed  Google Scholar 

  • Castro JP, Souza LGR, Alves LF, Silva AEB, Guerra M, P. Felix LP (2013) In Marhold K (ed) IAPT/IOPB chromosome data 15. Taxon 62:1073

  • Cota JH, Philbrick CT (1994) Chromosome number variation and polyploidy in the genus Echinocereus (Cactaceae). Am J Bot 81:1054–1062

    Article  Google Scholar 

  • Cota JH, Wallace RS (1995) Karyotypic studies in the Echinocerus (Cactaceae) and their taxonomic significance. Caryologia 48:105–122

    Article  Google Scholar 

  • Das AB, Mohanty S (2006) Karyotype analysis and in situ nuclear DNA content in seven species of Echinopsis Zucc. of the family Cactaceae. Cytologia 71:75–79

    Article  Google Scholar 

  • Edwards EJ, Donoghue MJ (2005) Pereskia and the origin of the cactus life-form. Am Nat 167:777–793

    Article  Google Scholar 

  • Feitoza LL, Felix LP, Castro AAJL, Carvalho R (2009) Cytogenetics of Alismatales s.s.: chromosomal evolution and C-banding. Plant Syst Evol 280:119–131

    Article  Google Scholar 

  • Goldblatt P, Johnson ED (2006) Index to plant chromosomes numbers 2001–2003. Monographs, Missouri Botanical Garden

  • Hubbell HR (1985) Silver staining as an indicator of active ribosomal genes. Stain Technol 60:285–294

    Article  CAS  PubMed  Google Scholar 

  • Hunt D, Taylor N, Charles G (2006) The new cactus lexicon, vols I, II reprint. DH Books, Melborne

  • Lan T, Albert VA (2011) Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. doi:10.1186/1471-2229-11-126

    PubMed  PubMed Central  Google Scholar 

  • Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst Evol 272:211–222

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, Bernardello G, Forni-Martins ER (2009) Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet Genome Res 124:72–80

    Article  PubMed  Google Scholar 

  • Las Peñas ML, Kiesling R, Bernardello G (2011) Karyotype, heterochromatin, and physical mapping of 5S and 18-5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 16:83–90

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst Evol 300:549–558

    Article  Google Scholar 

  • Lombello RA, Forni-Martins ER (1998) Cytological studies in climbers of Brazilian forest reserve. Cytologia 63:415–420

    Article  Google Scholar 

  • Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177:263–277

    Article  Google Scholar 

  • Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Am J Bot 82:276–287

    Article  Google Scholar 

  • Nyffeler R (2002) Phylogenetic relationships in the Cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326

    Article  CAS  PubMed  Google Scholar 

  • Oliveira IG, Moraes AP, Almeida EM, Assis FNM, Cabral JS, Barros F, Felix LP (2015) Chromosomal evolution in Pleurothallidinae (Orchidaceae: Epidendroideae) with an emphasis on the genus Acianthera: chromosome numbers and heterochromatin. Bot J Linn Soc 178:102–120

    Article  Google Scholar 

  • Palomino G, Socorro ZL, Scheinvar L (1988) Estudios citogenéticos de dos especies y una variedad del género Nyctocereus (Cactaceae). Bol Soc Bot Mex 48:75–80

    Google Scholar 

  • Parfitt BD (1987) Echinocereus nicholii (L. Benson) Cactaceae. Phytologia 63:157–158

    Google Scholar 

  • Pedrosa A, Guerra M, Soares-Filho WS (1997) An hierarchy of activation of nucleolar organizer regions in Citrus sinensis (L.) Osbeck. Cytobios 92:43–51

    Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrosa-Harand A, de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933

    Article  CAS  PubMed  Google Scholar 

  • Peruzzi L, Eroğlu HE (2013) Karyotype asymmetry: again, how to measure and what to measure? Comp Cytogenet 7:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkava DJ, Mcleod MG (1971) Chromosome numbers in some cacti of western North America. Brittonia 23:171–176

    Article  Google Scholar 

  • Pinkava DJ, McGill LA, Reeves T (1977) Chromosome number in some cacti of western North America. J Torrey Bot Soc 104:105–110

    Article  Google Scholar 

  • Pinkava DJ, Baker MA, Parfitt BD (1985) Chromosome numbers in some cacti of western North America. V. Syst Bot 10:471–483

    Article  Google Scholar 

  • Pinkava DJ, Parfitt BD, Baker MA, Worthington RD (1992) Chromosome numbers in some cacti of western North America. VI. Madroño 39:98–113

    Google Scholar 

  • Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530

    Article  Google Scholar 

  • Ross R (1981) Chromosome counts, cytology, and reproduction in the Cactaceae. Am J Bot 68:463–470

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. E. Arnold, London

    Google Scholar 

  • Stevens PF (2015) Angiosperm phylogeny website. http://www.mobot.org/MOBOT/research/APweb/. Accessed 07 July 2015

  • Sumner AT (2003) Chromosomes: organization and function. Blackwell, North Berwick

    Google Scholar 

  • Taylor N, Santos MR, Larocca J, Zappi D (2015) Lista de Espécies da Flora do Brasil—Cactaceae. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB70. Accessed 27 Feb 2015

  • Wallace RS (1995) Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 13:1–12

    Google Scholar 

  • Zurita F, Jiménez R, Guardia RD, Burgos M (1999) The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in situ hybridization study. Chromosome Res 7:563–570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the grant awarded to the last author; Professor Marcelo Guerra for allowing us to use the installations of the Laboratório de Citogenética e Evolução Vegetal at Universidade Federal de Pernambuco, which was critical to the realization of the present work; and the anonymous referee whose suggestions helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiane R. C. Batista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, J.P., Medeiros-Neto, E., Souza, G. et al. CMA band variability and physical mapping of 5S and 45S rDNA sites in Brazilian Cactaceae: Pereskioideae and Opuntioideae. Braz. J. Bot 39, 613–620 (2016). https://doi.org/10.1007/s40415-015-0248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0248-5

Keywords

Navigation