Skip to main content

Advertisement

Log in

Genomic Selection, a New Era for Pork Quality Improvement

  • Narrative Student Review
  • Published:
Springer Science Reviews

Abstract

Traditional breeding approaches apply sophisticated statistical tools such as best linear unbiased prediction (BLUP) to evaluate the genetic potential of animals for economically important traits using phenotype and pedigree information observed on the animal. However, the genetic gain achieved is relatively slow for traits with low-to-moderate heritability, or expensive to measure traits, such as those determined post-mortem e.g., pork quality. Nowadays, the availability of dense panels of DNA markers covering the whole genome along with powerful statistical tools has made genomic selection (GS) feasible in pigs. The large number of single nucleotide polymorphisms generated by high-throughput technologies can be used in GS to select superior animals with better meat quality. Many quantitative trait loci (QTL) affecting meat quality traits have been detected in pigs demonstrating the potential for this improvement. Genomic selection uses genome-wide markers so that all QTL are likely to be in linkage disequilibrium with at least one marker. Genomic selection sums the effects of markers covering the whole genome so that potentially all the genetic variance associated with the traits and explained by the markers are considered. This can greatly improve selection accuracy to accelerate genetic gain for pork quality traits. In this review, we discuss the genetic component underlying pork quality variation, statistical approaches for pork quality genomic prediction, and present recent highlights for their application in swine breeding programs. Firstly, we review how pork quality is integrated into breeding objectives. Secondly, we present approaches for application of molecular genetics in meat quality improvement. Additionally, we discuss the statistical methods for genomic prediction including ridge regression, Bayesian approaches, GBLUP, and combining genomic and traditional information using single-step BLUP. Finally, we review the strategies for their use in swine genetic improvement and management. In particular, we review the strategy for implementing GS in swine breeding programs to improve pork quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 93:743–752

    Article  CAS  PubMed  Google Scholar 

  2. Aguilar I, Misztal I, Tsuruta S, Wiggans GR, Lawlor TJ (2011) Multiple trait genomic evaluation of conception rate in Holsteins. J Dairy Sci 94:2621–2624

    Article  CAS  PubMed  Google Scholar 

  3. Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5:202–212

    Article  CAS  PubMed  Google Scholar 

  4. Armero E, Flores M, Barbosa J-A, Toldra F, Pla M (1998) Effects of terminal pig sire types and sex: on carcass traits, meat quality and sensory analysis of dry-cured ham. In: Proceedings 44th International Congress on Meat Science and Technology vol 2, pp 904–905

  5. Badke YM, Bates RO, Ernst CW, Fix J, Steibel JP (2014) Accuracy of Estimation of Genomic Breeding Values in Pigs Using Low-Density Genotypes and Imputation. Genes Genomes Genetics 4(4):623–631

    PubMed Central  PubMed  Google Scholar 

  6. Berry DP, Kearney F, Harris BL (2009) Genomic selection in Ireland. In: Proceedings of the Interbull International Workshop—Genomic Information in Genetic evaluation, Uppsala, Sweden, Bulletin no. 39

  7. Brondum RF, Su G, Lund MS, Bowman PJ, Goddard ME et al (2012) Genome specific priors for genomic prediction. BMC Genom 13:543

    Article  Google Scholar 

  8. Calus MPL (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157–164

    Article  CAS  PubMed  Google Scholar 

  9. Calus MPL, Meuwissen THE, de Ross APW, Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cameron ND (1993) Selection for meat quality: objectives and criteria. Pig News Inf 14:161–168

    Google Scholar 

  11. Chen CY, Misztal I, Aguilar I, Tsuruta S, Meuwissen THE, Aggrey SE, Wing T, Muir WM (2011) Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: an example using broiler chickens. J Anim Sci 89:23–28

    Article  CAS  PubMed  Google Scholar 

  12. Christensen OF, Lund MS (2010) Genomic prediction when some animals are not genotyped. Genet Sel Evol 42:2

    Article  PubMed Central  PubMed  Google Scholar 

  13. Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G (2012) Single-step methods for genomic evaluation in pigs. Animal 6:1565–1571

    Article  CAS  PubMed  Google Scholar 

  14. Ciobanu DC, Bastiaansen JW, Lonergan SM, Thomsen H, Dekkers JC, Plastow GS, Rothschild MF (2004) New alleles in calpastatin gene are associated with meat quality traits in pigs. J Anim Sci 82:2829–2839

    CAS  PubMed  Google Scholar 

  15. Cleveland MA, Forni S, Garrick DJ, Deeb N (2010) Prediction of genomic breeding values in a commercial pig population. In: 9th World Congress on Genetics Applied to Livestock Production, Leipzig

  16. Cockett NE, McEwan JC, Dalrymple BP, Wu C, Kijas J, Maddox JF, Oddy H, Nicholas F, Raadsma H (2009) Recent advances in sheep genomics. In: Plant and Animal Genome Conference, San Diego

    Google Scholar 

  17. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dalton R (2009) No bull: genes for better milk. Nature 457:369

    Article  CAS  PubMed  Google Scholar 

  19. de Roos APW, Hayes BJ, Goddard ME (2009) Reliability of genomic predictions across multiple populations. Genetics 183:1545

    Article  PubMed Central  PubMed  Google Scholar 

  20. de Roos APW, Hayes BJ, Spelman R, Goddard ME (2008) Linkage disequilibrium and persistence of phase in Holstein Friesian, Jersey and Angus cattle. Genetics 179:1503–1512

    Article  PubMed Central  PubMed  Google Scholar 

  21. de Vries AG, Faucitano L, Sosnicki A, Plastow GS (2000) The use of gene technology for optimal development of pork meat quality. Food Chem 69:397–405

    Article  Google Scholar 

  22. Dekkers JC (2004) Commercial application of marker—and gene—assisted selection in livestock: Strategies and lessons. J Anim Sci 82E - Supplement: E313–328

  23. Dekkers JCM (2007) Marker-assisted selection for commercial crossbred performance. J Anim Sci 85:2104–2114

    Article  CAS  PubMed  Google Scholar 

  24. Dransfield E, Ngapo TM, Nielson AN, Bredahl L, Sjödén PO et al (2005) Consumer choice and suggested price for pork as influenced by its appearance, taste and information concerning country of origin and organic pig production. Meat Sci 69:61–70

    Article  CAS  PubMed  Google Scholar 

  25. El-Dereny M, Rashwan NI (2011) Solving multicollinearity problem using ridge regression models. Int J Contemp Math Sci 6:585–600

    Google Scholar 

  26. Erbe M, Hayes BJ, Matukumali LK, Goswami S, Bowman PJ et al (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 95:4114–4129

    Article  CAS  PubMed  Google Scholar 

  27. Ewing B, Green P (2000) Analysis of expressed sequence tags indicates 35,000 human genes. Nat Genet 25:232–234

    Article  CAS  PubMed  Google Scholar 

  28. Falconer DS, MacKay TFC (1996) Introduction of quantitative genetics, 4th edn. Longman Limited, London

    Google Scholar 

  29. Fernando RL, Habier D, Sticker C, Dekkers JCM, Totir LR (2007) Genomic selection. Acta Agric Scand Sect A 57:192–195

    CAS  Google Scholar 

  30. Fischer RA (1918) The correlation between relatives: the supposition of mendelain inheritance. Trans R Soc Edinburgh 52:399

    Article  Google Scholar 

  31. Forni S, Aguilar I, Misztal I (2011) Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 43:1

    Article  PubMed Central  PubMed  Google Scholar 

  32. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    PubMed Central  PubMed  Google Scholar 

  33. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, Maclennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253(5018):448–451

    Article  CAS  PubMed  Google Scholar 

  34. Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semi parametric procedures. Genetics 173:1761–1776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Goddard ME (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  36. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  37. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programs. Nat Rev Genet 10:381–391

    Article  CAS  PubMed  Google Scholar 

  38. Groenen MA, Cheng HH, Bumstead N, Benkel BF, Briles WE et al (2000) A consensus linkage map of the chicken genome. Genome Res 10:137–147

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low- density marker panels. Genetics 182:343–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the bayesian alphabet for genomic selection. BMC Bioinform 12:186

    Article  Google Scholar 

  42. Harris BL, Johnson DL, Spelman RJ (2008) Genomic selection in New Zealand and the implications for National genetic evaluation. In: Proceedings of the 36th ICAR Biennial Session held in Niagara Falls, U.S.A. pp 325–330

  43. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  44. Hayes BJ, Goddard ME (2001) The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33:209–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hayes BJ, Goddard ME (2010) Genome-wide association and genomic selection in animal breeding. Genome. 53:876–883

    Article  CAS  PubMed  Google Scholar 

  46. Hoerl AE, Kennard DJ (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  47. Hu ZL, Fritz ER, Reecy JM (2007) AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res 35:D604–D609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kizilkaya K, Fernando RL, Garrick DJ (2010) Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 88:544–551

    Article  CAS  PubMed  Google Scholar 

  49. Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663

    Article  CAS  PubMed  Google Scholar 

  50. Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE (2009) The accuracy of genomic selection in Norwegian Red Cattle assessed by cross-validation. Genetics 183:1119–1126

    Article  PubMed Central  PubMed  Google Scholar 

  51. Maddox JF, Davies KP, Crawford AM, Hulme DJ, Vaiman D et al (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res 11:1275–1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan M, Heaton MP, O’Connell JR, Sonstegard TS, Smith TPL, Moore SS, Van Tassell CP (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLOS One 4:4e5350

    Article  Google Scholar 

  53. Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:161–176

    Article  PubMed Central  Google Scholar 

  54. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Miar Y, Plastow GS, Bruce HL, Kemp RA, Charagu P, Zhang CY, Huisman AE, Wang Z (2014) Genomic Selection of Pork pH in Purebred Pigs for Crossbred Performance. In: 10th World Congress on Genetics Applied to Livestock Production, Vancouver

  56. Miar Y, Plastow GS, Bruce HL, Moore SS, Manafiazar G, Kemp RA, Charagu P, Huisman AE, Van Haandel B, Zhang CY, McKay RB, Wang Z (2014) Genetic and phenotypic relationships between performance with meat quality and carcass characteristics in commercial crossbred pigs. PLoS One 9:e110105

    Article  PubMed Central  PubMed  Google Scholar 

  57. Miar Y, Plastow GS, Moore SS, Manafiazar G, Charagu P, Kemp RA, Van Haandel B, Huisman AE, Zhang CY, McKay RB, Bruce HL, Wang Z (2014) Genetic and phenotypic parameters for carcass, and meat quality traits in commercial crossbred pigs. J Anim Sci 92:2869–2884

    Article  CAS  PubMed  Google Scholar 

  58. Milan D, Woloszyn N, Yerle M, Le Roy P, Bonnet M, Riquet J, Lahbib-Mansais Y et al (1996) Accurate mapping of the “acid meat” RN gene on genetic and physical maps of pig chromosome 15. Mamm Genome 1:47–51

    Article  Google Scholar 

  59. Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    Article  CAS  PubMed  Google Scholar 

  60. Misztal I, Tsuruta S, Aguilar I, Legarra A, VanRaden PM, Lawlor TJ (2013) Methods to approximate reliabilities in single step genomic evaluation. J Dairy Sci 96:647–654

    Article  CAS  PubMed  Google Scholar 

  61. Monin G, Sellier P (1985) Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Sci 13:49–63

    Article  CAS  PubMed  Google Scholar 

  62. Monin G, Talmant A, Laborde D, Zabari M, Sellier P (1986) Compositional and enzymatic characteristics of the Longissimus dorsi muscle from Large White, halothane-positive and halothane-negative Pietrain and Hampshire pigs. Meat Sci 16:307–316

    Article  CAS  PubMed  Google Scholar 

  63. Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56

    Article  PubMed Central  PubMed  Google Scholar 

  64. Moser G, Tier B, Khatkar MS, Hayes BJ, Raadsma HW (2010) Accuracy of direct genomic values in Holstein bulls and cows using subset of SNP markers. Genet Sel Evol 42:37

    Article  PubMed Central  PubMed  Google Scholar 

  65. Muir WM (2007) Comparison of genomic and traditional BLUP - estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355

    Article  CAS  PubMed  Google Scholar 

  66. Nejati-Javaremi A, Smith C, Gibson JP (1997) Effect of total allelic relationship on accuracy of evaluation and response to selection. J Anim Sci 75:1738–1745

    CAS  PubMed  Google Scholar 

  67. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  CAS  PubMed  Google Scholar 

  68. Ødegård J, Yazdi MH, Sonesson AK, Meuwissen THE (2009) Incorporating desirable genetic characteristics from an inferior into a superior population using genomic selection. Genetics 181:737–745

    Article  PubMed Central  PubMed  Google Scholar 

  69. Onteru SK, Fan B, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF (2012) A whole-genome association study for pig reproductive traits. Anim Genet 43:18–26

    Article  CAS  PubMed  Google Scholar 

  70. Onteru SK, Fan B, Nikkilä MT, Garrick KJ, Stalder KJ, Rothschild MF (2011) Whole-genome association analyses for lifetime reproductive traits in the pig. J Anim Sci 89:988–995

    Article  CAS  PubMed  Google Scholar 

  71. Piyasatian N, Fernando RL, Dekkers JCM (2006) Genomic selection for composite line development using low density marker maps. In: Proceedings 8th World Congr Genet Appl Livest Prod, Belo Horizonte

  72. Ramos AM, Crooijimans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Shook LB, Groenen MA (2009) Design of high density SNP genotyping assay in the using of SNPs identified and characterized by next generation sequencing technology. PLoS One 4:e6524

    Article  PubMed Central  PubMed  Google Scholar 

  73. Rohrer GA, Alexander LJ, Hu Z, Smith TPL, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391

    Article  CAS  PubMed  Google Scholar 

  74. Rosenvold K, Andersen HJ (2003) Factors of significance for pork quality—a review. Meat Sci 64:219–237

    Article  PubMed  Google Scholar 

  75. Rothschild MF, Hu ZL, Jiang ZH (2007) Advances in QTL mapping in pigs. Int J Biol Sci 3:192–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sargolzaei M, Schenkel FS, VanRaden PM (2009) gebv: Genomic breeding value estimator for livestock. Technical report to the Dairy Cattle Breeding and Genetics Committee. October 07, 2009

  77. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  CAS  PubMed  Google Scholar 

  78. Schenkel FS, Sargolzaei M, Kistemaker G, Jansen GB, Sullivan P, Van Doornmaal BJ, VanRanden PM, Wiggans GR (2009) Reliability of genomic evaluation of Holstein cattle in Canada. In: Proceedings of the Interbull International Workshop - Genomic Information in Genetic evaluation, Uppsala, Sweden, Bulletin no. 39

  79. Sellier P, Monin G (1994) Genetics of pig meat quality: a review. J Muscle Foods 5:187–219

    Article  Google Scholar 

  80. Smaragdov MG (2009) Genomic selection as a possible accelerator of traditional selection. Russ J Genet 45:633–636

    Article  CAS  Google Scholar 

  81. Suzuki N, Kojima Y, Ikeuchi S, Ikarashi N, Moriyama T et al (1991) Carcass composition and meat quality of Chinese purebred and European × Chinese crossbred pigs. Meat Sci 29:31–41

    Article  CAS  PubMed  Google Scholar 

  82. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141

    Article  CAS  PubMed  Google Scholar 

  83. Toosi A, Fernando RL, Dekkers JCM (2010) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32

    Article  CAS  PubMed  Google Scholar 

  84. Touraille C, Monin G (1984) Comparaison des qualités organoleptiques de laviande de porcs de trois races: large White, Landrace français, Landrace belge. Journées de la Recherche Porcine en France 16:75–80

    Google Scholar 

  85. Touraille C, Monin G, Legault C (1989) Eating quality of meat from European × Chinese crossbred pigs. Meat Sci 25:177–186

    Article  CAS  PubMed  Google Scholar 

  86. Tsuruta S, Misztal I, Aguilar I, Lawlor TJ (2011) Multiple trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. J Dairy Sci 94:4198–4204

    Article  CAS  PubMed  Google Scholar 

  87. Van der Steen HAM, Prall GFW, Plastow GS (2005) Application of genomics to the pork industry. J Anim Sci 83(suppl 13):E1–E8

  88. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  89. VanRaden PM (2012) Avoiding bias from genomic pre-selectionin converting daughter information across countries. Interbull Bull 45:1–5

    Google Scholar 

  90. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16

    Article  CAS  PubMed  Google Scholar 

  91. Vignal A, Milan D, SanCristobal M et al (2002) A review of SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Weller JI (2001) Quantitative trait loci analysis in animals. CABI Publishing, London

    Book  Google Scholar 

  93. Weller JI (2010) Whole genome marker-assisted selection. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 5:1–10

    Google Scholar 

  94. Welsh CS, Stewart TS, Schwab C, Blackburn HD (2010) Pedigree analysis of 5 swine breeds in the United States and the implications for genetic conservation. J Anim Sci 88:1610–1618

    Article  CAS  PubMed  Google Scholar 

  95. Xu A, Hu Z (2010) Methods of plant breeding in the genome era. Genet Res 92:423–441

    Article  CAS  Google Scholar 

  96. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Xu S, Jia Z (2007) Genome-wide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Zeng J, Toosi A, Fernando RL, Dekkers JC, Garrick DJ (2013) Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action. Genet Sel Evol 45:11

    Article  PubMed Central  PubMed  Google Scholar 

  99. Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J et al (2010) Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One 5:e12648

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Miar.

Additional information

Endorsed by Zhiquan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miar, Y., Plastow, G. & Wang, Z. Genomic Selection, a New Era for Pork Quality Improvement. Springer Science Reviews 3, 27–37 (2015). https://doi.org/10.1007/s40362-015-0029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-015-0029-3

Keywords

Navigation