Skip to main content
Log in

18F-labelling innovations and their potential for clinical application

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

An impressive variety of new methodologies for the preparation of 18F-labelled tracers and ligands has appeared over the last decade. Most strategies of the newly developed radiofluorination methods predominantly aim at products of high molar activity by ‘late-stage’ labelling of small (hetero)aromatic molecules and the use of transition metals. This is accompanied by the improvement of technical procedures, like preparation of reactive [18F]fluoride and automated syntheses. The newly introduced procedures reflect a high innovative level and creativity in radio(pharmaceutical) chemistry at present, which are based on modern chemical methods and deep mechanistic insights. Taking also automation and quality control into consideration, major recently developed radiofluorination methods, most of those still under development, are compiled here in view of their potential for clinical PET imaging and thus the ability to advance molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Preshlock S, Tredwell M, Gouverneur V (2016) 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev 116:719–766

    Article  PubMed  CAS  Google Scholar 

  2. Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJH (2014) Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem 14:875–900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ (2017) Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 46:4709–4773

    Article  PubMed  Google Scholar 

  4. Schirrmacher R, Wängler B, Bailey J, Bernard-Gauthier V, Schirrmacher E, Wängler C (2017) Small prosthetic groups in 18F-radiochemistry: useful auxiliaries for the design of 18F-PET tracers. Semin Nucl Med 47:474–492

    Article  PubMed  Google Scholar 

  5. Kniess T, Laube M, Brust P, Steinbach J (2015) 2-[18F]Fluoroethyl tosylate—a versatile tool for building 18F-based radiotracers for positron emission tomography. Med Chem Commun 6:1714–1754

    Article  CAS  Google Scholar 

  6. Buckingham F, Gouverneur V (2016) Asymmetric 18F-fluorination for applications in positron emission tomography. Chem Sci 7:1645–1652

    Article  PubMed  CAS  Google Scholar 

  7. Laverman P, McBride WJ, Sharkey RM, Goldenberg DM, Boerman OC (2014) Al18F labeling of peptides and proteins. J Label Compd Radiopharm 57:219–223

    Article  CAS  Google Scholar 

  8. Burke BP, Clemente GS, Archibald SJ (2015) Boron-18F containing positron emission tomography radiotracers: advances and opportunities. Contrast Media Mol Imaging 10:96–110

    Article  PubMed  CAS  Google Scholar 

  9. Bernard-Gauthier V, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R (2016) From unorthodox to established: the current status of 18F-trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug Chem 27:267–279

    Article  PubMed  CAS  Google Scholar 

  10. Chansaenpak K, Wang M, Wang H, Giglio BC, Gabbai FP, Wu Z, Li Z (2017) Preparation of [18F]-NHC-BF3 conjugates and their applications in PET imaging. RSC Adv 7:17748–17751

    Article  CAS  Google Scholar 

  11. Roeda D, Dolle F (2015) Recent developments in the chemistry of [18F]fluoride for PET. Chemistry of Molecular Imaging, ed. Long N, Wong W T. Hoboken: John Wiley & Sons Inc. 55-77

  12. Jacobson O, Kiesewetter DO, Chen X (2015) Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chem 26:1–18

    Article  CAS  Google Scholar 

  13. Wan WX, Guo N, Pan DH, Yu CJ, Weng Y, Luo SN, Ding H, Xu YP, Wang LZ, Lang LX, Xie QG, Yang M, Chen XY (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lien VT, Riss PJ (2014) Radiosynthesis of [18F]Trifluoroalkyl groups: scope and limitations. BioMed Res Int 2014:380124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Honer M, Gobbi L, Martarello L, Comley RA (2014) Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov Today 19:1936–1944

    Article  PubMed  CAS  Google Scholar 

  16. Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, Jeong JM, Mach RH, Mindt TL, Pike VW, Windhorst AD (2017) Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight. Nucl Med Biol 55:v-xi

  17. Firnau G, Chirakal R, Garnett ES (1984) Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa. J Nucl Med 25:1228–1233

    PubMed  CAS  Google Scholar 

  18. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE (1978) Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharm 14:175–183

    Article  CAS  Google Scholar 

  19. Fowler JS, Ido T (2002) Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 32:6–12

    Article  PubMed  Google Scholar 

  20. de Vries EFJ, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W (1999) Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Rad Isot 51:389–394

    Article  Google Scholar 

  21. Pretze M, Wängler C, Wängler B (2014) 6-[18F]fluoro-L-DOPA: A well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed Res Int 2014

  22. Antuganov DO, Zykov MP, Ryzhkova DV, Zykova TA, Vinal’ev AA, Antuganova YO, Samburov OP (2016) Synthesis of [18F]-L-DOPA radiopharmaceutical on a modified GE TracerLAB Fx F-E platform. Radiochemistry 58:649-653

  23. Füchtner F, Zessin J, Mäding P, Wüst F (2008) Aspects of 6-[18F]fluoro-L-DOPA preparation: deuterochloroform as a substitute solvent for Freon 11. NuklearMedizin 47:62–64

    PubMed  Google Scholar 

  24. Forsback S, Eskola O, Bergman J, Haaparanta M, Solin O (2009) Alternative solvents for electrophilic synthesis of 6-[18F]fluoro-L-DOPA. J Label Compd Radiopharm 52:286–288

    Article  CAS  Google Scholar 

  25. Coenen HH (2007) Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions In: Schubiger P A, Lehmann L, Friebe M (eds.) PET Chemistry: The Driving Force in Molecular Imaging. Ernst Schering Research Foundation Workshop 62. Springer, Heidelberg, pp 15–50

  26. Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Ang Chem Int Ed 47:8998–9033

    Article  CAS  Google Scholar 

  27. Bergman J, Johnström P, Haaparanta M, Solin O, Duelfer T, Stone-Elander S (1995) Radiolabelling of 2-oxoquazepam with electrophilic 18F prepared from [18F]fluoride. Appl Rad Isot 46:1027–1034

    Article  CAS  Google Scholar 

  28. Bergman J, Solin O (1997) Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 24:677–683

    Article  PubMed  CAS  Google Scholar 

  29. Forsback S, Solin O (2015) Post-target produced [18F]F2 in the production of PET radiopharmaceuticals. Radiochim Acta 103:219–226

    Article  CAS  Google Scholar 

  30. Krzyczmonik A, Keller T, Kirjavainen AK, Forsback S, Solin O (2017) Vacuum ultraviolet photon–mediated production of [18F]2. J Label Compd Radiopharm 60:186–193

    Article  CAS  Google Scholar 

  31. Stenhagen ISR, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V (2013) Fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun 49:1386–1388

    Article  CAS  Google Scholar 

  32. Kilbourn MR (1990) Fluorine-18 labeling of radiopharmaceuticals. Nuclear science series. National Academy Press, Washington, DC, p 149

    Google Scholar 

  33. Coenen HH (1986) New radiohalogenation methods: An overview. In: Cox PH et al (eds) Progress in radiopharmacy. Springer, Berlin, Heidelberg, pp 196–220

    Chapter  Google Scholar 

  34. Guillaume M, Luxen A, Nebeling B, Argentini M, Clark JC, Pike VW (1991) Recommendations for fluorine-18 production. Int J Appl Radiat Isot 42:749–762

    Article  CAS  Google Scholar 

  35. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70–1:249–272

    Google Scholar 

  36. Awasthi V, Watson J, Gali H, Matlock G, McFarland A, Bailey J, Anzellotti A (2014) A “dose on demand” Biomarker Generator for automated production of [18F]F and [18F]FDG. Appl Rad Isot 89:167–175

    Article  CAS  Google Scholar 

  37. Siikanen J, Ohlsson T, Medema J, Van-Essen J, Sandell A (2013) A niobium water target for routine production of [18F]Fluoride with a MC 17 cyclotron. Appl Rad Isot 72:133–136

    Article  CAS  Google Scholar 

  38. Berridge MS, Voelker KW, Bennington B (2002) High-yield, low-pressure [18O]water targets of titanium and niobium for F-18 production on MC-17 cyclotrons. Appl Rad Isot 57:303–308

    Article  CAS  Google Scholar 

  39. Satyamurthy N, Amarasekera B, Alvord CW, Barrio JR, Phelps ME (2002) Tantalum [18O]water target for the production of [18F]Fluoride with high reactivity for the preparation of 2-deoxy-2-[18F]Fluoro-d-glucose. Mol Imaging Biol 4:65–70

    Article  PubMed  CAS  Google Scholar 

  40. Gatley JS, Shaughnessy WJ (1982) Production of 18F-labeled compounds with 18F− produced with a 1-MW research reactor. Int J Appl Rad Isot 33:1325–1330

    Article  CAS  Google Scholar 

  41. Coenen HH, Klatte B, Knöchel A (1986) Preparation of n.c.a. [17-18F]-fluoroheptadecanoic acid in high yields via aminopolyether supported, nucleophilic fluorination. J Label Compd Radiopharm 23:455–466

    Article  CAS  Google Scholar 

  42. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  43. De Ruysscher D, Haustermans K, Thorwarth D (2016) FDG and Beyond. In: Baumann M, Krause M, Cordes N (eds) Molecular radio-oncology. Springer, Berlin, Heidelberg, pp 163–173

    Chapter  Google Scholar 

  44. Hamacher K, Blessing G, Nebeling B (1990) Computer-aided synthesis (CAS) of no-carrier-added 2-[18F]fluoro-2-deoxy-d-glucose: an efficient automated system for the aminopolyether-supported nucleophilic fluorination. Appl Rad Isot 41:49–55

    Article  CAS  Google Scholar 

  45. Krasikova R (2007) Synthesis modules and automation in F-18 labeling In: Schubiger P A, Lehmann L, Friebe M (ed) PET Chemistry: The Driving Force in Molecular Imaging. Ernst Schering Research Foundation Workshop 62 pp 289–316

  46. Cai L, Lu S, Pike VW (2008) Chemistry with [18F]fluoride ion. Eur J Org Chem 17:2853–2870

    Article  CAS  Google Scholar 

  47. Roeda D, Dollé F (2010) Aliphatic nucleophilic radiofluorination. Curr Radiopharm 3:81–108

    Article  CAS  Google Scholar 

  48. Attiná M, Cacace F, Wolf AP (1983) Displacement of a nitro-group by [18F]fluoride ion. A new route to aryl fluorides of high specific activity. J Chem Soc, Chem Commun 3:108–109

    Article  Google Scholar 

  49. Lu S, Lepore SD, Song YL, Mondal D, Cohn PC, Bhunia AK, Pike VW (2009) Nucleophile assisting leaving groups: a strategy for aliphatic 18F-fluorination. J Org Chem 74:5290–5296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD (2014) Neither azeotropic drying, nor base nor other additives: a minimalist approach to 18F-labeling. Org Biomol Chem 12:8094–8099

    Article  PubMed  CAS  Google Scholar 

  51. Zischler J, Krapf P, Richarz R, Zlatopolskiy BD, Neumaier B (2016) Automated synthesis of 4-[18F]fluoroanisole, [18F]DAA1106 and 4-[18F]FPhe using Cu-mediated radiofluorination under “minimalist” conditions. Appl Rad Isot 115:133–137

    Article  CAS  Google Scholar 

  52. Kim DW, Ahn D-S, Oh Y-H, Lee S, Kil HS, Oh SJ, Lee SJ, Kim JS, Ryu JS, Moon DH, Chi DY (2006) A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc 128:16394–16397

    Article  PubMed  CAS  Google Scholar 

  53. Kim DW, Jeong Lim ST, Sohn M-H, Katzenellenbogen JA, Chi DY (2008) Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J Org Chem 73:957–962

    Article  PubMed  CAS  Google Scholar 

  54. Pfeifer L, Engle KM, Pidgeon GW, Sparkes HA, Thompson AL, Brown JM, Gouverneur V (2016) Hydrogen-bonded homoleptic fluoride-diarylurea complexes: structure, reactivity, and coordinating power. J Am Chem Soc 138:13314–13325

    Article  CAS  Google Scholar 

  55. He P, Haswell SJ, Pamme N, Archibald SJ (2014) Advances in processes for PET radiotracer synthesis: separation of [18F]fluoride from enriched [18O]water. Appl Rad Isot 91:64–70

    Article  CAS  Google Scholar 

  56. Pascali G, Matesic L, Collier TL, Wyatt N, Fraser BH, Pham TQ, Salvadori PA, Greguric I (2014) Optimization of nucleophilic 18F radiofluorinations using a microfluidic reaction approach. Nat Protoc 9:2017–2029

    Article  PubMed  CAS  Google Scholar 

  57. De Leonardis F, Pascali G, Salvadori PA, Watts P, Pamme N (2011) On-chip pre-concentration and complexation of [18F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of Positron Emission Tomography tracers. J Chromatogr A 1218:4714–4719

    Article  PubMed  CAS  Google Scholar 

  58. Lee SJ, Oh SJ, Chi DY, Moon DH, Ryu JS (2012) High yielding [18F]fluorination method by fine control of the base. Bull Korean Chem Soc 33:2177–2180

    Article  CAS  Google Scholar 

  59. Seo JW, Lee BS, Lee SJ, Oh SJ, Chi DY (2011) Fast and easy drying method for the preparation of activated [18F]fluoride using polymer cartridge. Bull Korean Chem Soc 32:71–76

    Article  CAS  Google Scholar 

  60. Mossine AV, Brooks AF, Ichiishi N, Makaravage KJ, Sanford MS, Scott PJH (2017) Development of customized [18F]fluoride elution techniques for the enhancement of copper-mediated late-stage radiofluorination. Sci Rep 7:233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K (2017) Minimization of the amount of Kryptofix 222 - KHCO3 for applications to microscale 18F-radiolabeling. Appl Rad Isot 125:113–118

    Article  CAS  Google Scholar 

  62. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2-[18F]fluoro-d-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 17:273–279

    CAS  Google Scholar 

  63. Mathiessen B, Zhuravlev F (2013) Automated solid-phase radiofluorination using polymer-supported phosphazenes. Molecules 18:10531–10547

    Article  PubMed  CAS  Google Scholar 

  64. Sergeev ME, Morgia F, Lazari M, Wang C, van Dam RM (2015) Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium. J Am Chem Soc 137:5686–5694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wessmann SH, Henriksen G, Wester HJ (2012) Cryptate mediated nucleophilic 18F-fluorination without azeotropic drying. NuklearMedizin 51:1–8

    PubMed  CAS  Google Scholar 

  66. Kostikov AP, Chin J, Orchowski K, Niedermoser S, Kovacevic MM, Aliaga A, Jurkschat K, Wängler B, Wängler C, Wester HJ, Schirrmacher R (2012) Oxalic acid supported Si-18F-radiofluorination: one-step radiosynthesis of N-succinimidyl 3-(di-tert-butyl [18F]fluorosilyl) benzoate ([18F]SiFB) for protein labeling. Bioconjugate Chem 23:106–114

    Article  CAS  Google Scholar 

  67. Mathiessen B, Jensen M, Zhuravlev F (2011) [18F]Fluoride recovery via gaseous [18F]HF. J Label Compd Radiopharm 54:816–818

    Article  CAS  Google Scholar 

  68. Lemaire CF, Aerts JJ, Voccia S, Libert LC, Mercier F, Goblet D, Plenevaux AR, Luxen AJ (2010) Fast production of highly reactive No-Carrier-Added [18F]fluoride for the labeling of radiopharmaceuticals. Ang Chem Int Ed 49:3161–3164

    Article  CAS  Google Scholar 

  69. Friebe M, Graham K, Berndt M, Schmitt-Willich H (2010) Process for production of radiopharmaceuticals. Patent WO2010/003548 A1

  70. Aerts J, Voccia S, Lemaire C, Giacomelli F, Goblet D, Thonon D, Plenevaux A, Warnock G, Luxen A (2010) Fast production of highly concentrated reactive [18F]fluoride for aliphatic and aromatic nucleophilic radiolabelling. Tetrahedron Lett 51:64–66

    Article  CAS  Google Scholar 

  71. Brichard L, Aigbirhio F (2014) An Efficient method for enhancing the reactivity and flexibility of [18F]fluoride towards nucleophilic substitution using tetraethylammonium bicarbonate. Eur J Org Chem 2014:6145–6149

    Article  CAS  Google Scholar 

  72. Kim DW, Choe YS, Chi DY (2003) A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl Med Biol 30:345–350

    Article  PubMed  CAS  Google Scholar 

  73. Lindner S, Rensch C, Neubaur S, Neumeier M, Salvamoser R, Samper V, Bartenstein P (2016) Azeotropic drying free [18F]FDG synthesis and its application to a lab-on-chip platform. Chem Commun 52:729–732

    Article  CAS  Google Scholar 

  74. Kniess T, Laube M, Steinbach J (2017) “Hydrous 18F-fluoroethylation”—Leaving off the azeotropic drying. Appl Rad Isot 127:260–268

    Article  CAS  Google Scholar 

  75. Chun J-H, Telu S, Lu S, Pike VW (2013) Radiofluorination of diaryliodonium tosylates under aqueous-organic and cryptand-free conditions. Org Biomol Chem 11:5094–5099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Klenner MA, Pascali G, Zhang B, Sia TR, Spare LK, Krause-Heuer AM, Aldrich-Wright JR, Greguric I, Guastella AJ, Massi M, Fraser BH (2017) A fluorine-18 radiolabeling method enabled by rhenium(I) complexation circumvents the requirement of anhydrous conditions. Chem Eur J 23:6499–6503

    Article  PubMed  CAS  Google Scholar 

  77. Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD (2017) Alcohol-enhanced Cu-mediated radiofluorination. Chem Eur J 23:3251–3256

    Article  PubMed  CAS  Google Scholar 

  78. Hamacher K, Hirschfelder T, Coenen HH (2002) Electrochemical cell for separation of [18F]fluoride from irradiated 18O-water and subsequent no carrier added nucleophilic fluorination. Appl Rad Isot 56:519–523

    Article  CAS  Google Scholar 

  79. Kügler F, Roehrens D, Stumpf M, Drerup C, Ermert J, Hamacher K, Coenen HH (2014) Optimizing the transfer of [18F]fluoride from aqueous to organic solvents by electrodeposition using carbon electrodes. Appl Rad Isot 91:1–7

    Article  CAS  Google Scholar 

  80. Sadeghi S, Liang V, Cheung S, Woo S, Wu C, Ly J, Deng Y, Eddings M, van Dam RM (2013) Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers. Appl Rad Isot 75:85–94

    Article  CAS  Google Scholar 

  81. Saiki H, Iwata R, Nakanishi H, Wong R, Ishikawa Y, Furumoto S, Yamahara R, Sakamoto K, Ozeki E (2010) Electrochemical concentration of no-carrier-added [18F]fluoride from [18O]water in a disposable microfluidic cell for radiosynthesis of 18F-labeled radiopharmaceuticals. Appl Rad Isot 68:1703–1708

    Article  CAS  Google Scholar 

  82. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  83. Zuhayra M, Alfteimi A, Forstner CV, Lützen U, Meller B, Henze E (2009) New approach for the synthesis of [18F]fluoroethyltyrosine for cancer imaging: simple, fast, and high yielding automated synthesis. Bioorg Med Chem 17:7441–7448

    Article  PubMed  CAS  Google Scholar 

  84. Mueller D, Klette I, Kalb F, Baum RP (2011) Synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine based on a cartridge purification method. Nucl Med Biol 38:653–658

    Article  PubMed  CAS  Google Scholar 

  85. Langen K-J, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D (2006) O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  86. Bourdier T, Greguric I, Roselt P, Jackson T, Faragalla J, Katsifis A (2011) Fully automated one-pot radiosynthesis of O-(2-[18F]fluoroethyl)-l-tyrosine on the TracerLab FXFN module. Nucl Med Biol 38:645–651

    Article  PubMed  CAS  Google Scholar 

  87. Fedorova O, Kuznetsova O, Stepanova M, Maleev V, Belokon Y, Wester H-J, Krasikova R (2014) A facile direct nucleophilic synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) without HPLC purification. J Radioanal Nucl Chem 301:505–512

    Article  CAS  Google Scholar 

  88. Topley AC, Isoni V, Logothetis TA, Wynn D, Wadsworth H, Gibson AMR, Khan I, Wells NJ, Perrio C, Brown RCD (2013) A Resin-Linker-Vector Approach to Radiopharmaceuticals Containing 18F: application in the Synthesis of O-(2-[18F]Fluoroethyl)-L-tyrosine. Chem Eur J 19:1720–1725

    Article  PubMed  CAS  Google Scholar 

  89. Been LB, Suurmeijer AJH, Cobben DCP, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  90. Wilson IK, Chatterjee S, Wolf W (1991) Synthesis of 3′-fluoro-3′-deoxythymidine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the biodistribution of drugs against AIDS. J Fluor Chem 55:283–289

    Article  CAS  Google Scholar 

  91. Grierson JR, Shields AF, Eary JF (1997) Development of a radiosynthesis for 3′-[18F]fluoro-3′-deoxy-nucleosides. J Label Compd Radiopharm 40:60–62

    Google Scholar 

  92. Alauddin MM (2013) Nucleoside-based probes for imaging tumor proliferation using positron emission tomography. J Label Compd Radiopharm 56:237–243

    Article  CAS  Google Scholar 

  93. Meyer J-P, Probst KC, Westwell AD (2014) Radiochemical synthesis of 2′-[18F]-labelled and 3′-[18F]-labelled nucleosides for positron emission tomography imaging. J Label Compd Radiopharm 57:333–337

    Article  CAS  Google Scholar 

  94. Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR (2000) Simplified labeling approach for synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 243:843–846

    Article  CAS  Google Scholar 

  95. Wodarski C, Eisenbarth J, Weber K, Henze M, Haberkorn U, Eisenhut M (2000) Synthesis of 3′-deoxy-3′-[18F]fluoro-thymidine with 2,3′-anhydro-5′-O-(4,4′-dimethoxytrityl)-thymidine. J Label Compd Radiopharm 43:1211–1218

    Article  CAS  Google Scholar 

  96. Grierson JR, Shields AF (2000) Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 27:143–156

    Article  PubMed  CAS  Google Scholar 

  97. Reischl G, Blocher A, Wei RQ, Ehrlichmann W, Kuntzch M, Solbach C, Dohmen BM, Machulla HJ (2006) Simplified, automated synthesis of 3′[18F]fluoro-3′-deoxy-thymidine ([18F]FLT) and simple method for a metabolite analysis in plasma. Radiochim Acta 94:447–451

    Article  CAS  Google Scholar 

  98. Yun M, Oh SJ, Ha H-J, Ryu JS, Moon DH (2003) High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-β-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 30:151–157

    Article  PubMed  CAS  Google Scholar 

  99. Martin SJ, Eisenbarth JA, Wagner-Utermann U, Mier W, Henze M, Pritzkow H, Haberkorn U, Eisenhut M (2002) A new precursor for the radiosynthesis of [18F]FLT. Nucl Med Biol 29:263–273

    Article  PubMed  CAS  Google Scholar 

  100. Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS, Yeo JS, Moon DH (2004) Fully automated synthesis system of 3′-deoxy-3′-[18F]fluorothymidine. Nucl Med Biol 31:803–809

    Article  PubMed  CAS  Google Scholar 

  101. Teng B, Wang S, Fu Z, Dang Y, Wu Z, Liu L (2006) Semiautomatic synthesis of 3′-deoxy-3′-[18F]fluorothymidine using three precursors. Appl Rad Isot 64:187–193

    Article  CAS  Google Scholar 

  102. Suehiro M, Vallabhajosula S, Goldsmith SJ, Ballon DJ (2007) Investigation of the role of the base in the synthesis of [18F]FLT. Appl Rad Isot 65:1350–1358

    Article  CAS  Google Scholar 

  103. Marchand P, Ouadi A, Pellicioli M, Schuler J, Laquerriere P, Boisson F, Brasse D (2016) Automated and efficient radiosynthesis of [18F]FLT using a low amount of precursor. Nucl Med Biol 43:520–527

    Article  PubMed  CAS  Google Scholar 

  104. Pascali C, Bogni A, Fugazza L, Cucchi C, Crispu O, Laera L, Iwata R, Maiocchi G, Crippa F, Bombardieri E (2012) Simple preparation and purification of ethanol-free solutions of 3′-deoxy-3′-[18F]fluorothymidine by means of disposable solid-phase extraction cartridges. Nucl Med Biol 39:540–550

    Article  PubMed  CAS  Google Scholar 

  105. Cheung Y-Y, Nickels ML, McKinley ET, Buck JR, Manning HC (2015) High-yielding, automated production of 3′-deoxy-3′-[18F]fluorothymidine using a modified Bioscan Coincidence FDG reaction module. Appl Rad Isot 97:47–51

    Article  CAS  Google Scholar 

  106. Lee SJ, Oh SJ, Chi DY, Kil HS, Kim EN, Ryu JS, Moon DH (2007) Simple and highly efficient synthesis of 3′-deoxy-3′-[18F]fluorothymidine using nucleophilic fluorination catalyzed by protic solvent. Eur J Nucl Med Mol Imaging 34:1406–1409

    Article  PubMed  CAS  Google Scholar 

  107. Liu W, Huang X, Placzek MS, Krska SW, McQuade P, Hooker JM, Groves JT (2018) Site-selective 18F fluorination of unactivated C–H bonds mediated by a manganese porphyrin. Chem Sci 9:1168–1172

    Article  PubMed  CAS  Google Scholar 

  108. Coenen HH, Ermert J (2010) Direct nucleophilic 18F-fluorination of electron rich arenes: present limits of no-carrier-added reactions. Curr Radiopharm 3:163–173

    Article  CAS  Google Scholar 

  109. Elmenhorst D, Kroll T, Matusch A, Bauer A (2012) Sleep deprivation increases cerebral serotonin 2A receptor binding in humans. Sleep 35:1615–1623

    Article  PubMed  PubMed Central  Google Scholar 

  110. Quednow BB, Treyer V, Hasler F, Dörig N, Wyss MT, Burger C, Rentsch KM, Westera G, Schubiger PA, Buck A, Vollenweider FX (2012) Assessment of serotonin release capacity in the human brain using dexfenfluramine challenge and [18F]altanserin positron emission tomography. NeuroImage 59:3922–3932

    Article  PubMed  CAS  Google Scholar 

  111. Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L (1991) Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med 32:2266–2272

    PubMed  CAS  Google Scholar 

  112. Hamacher K, Coenen HH (2006) No-carrier-added nucleophilic 18F-labelling in an electrochemical cell exemplified by the routine production of [18F]altanserin. Appl Rad Isot 64:989–994

    Article  CAS  Google Scholar 

  113. Ermert J, Coenen HH (2010) Nucleophilic 18F-fluorination of complex molecules in activated carbocyclic aromatic position. Curr Radiopharm 3:109–126

    Article  CAS  Google Scholar 

  114. Hasler F, Kuznetsova OF, Krasikova RN, Cservenyak T, Quednow BB, Vollenweider FX, Ametamey SM, Westera G (2009) GMP-compliant radiosynthesis of [18F]altanserin and human plasma metabolite studies. Appl Rad Isot 67:598–601

    Article  CAS  Google Scholar 

  115. Hayashi K, Furutsuka K, Ito T, Muto M, Aki H, Fukumura T, Suzuki K (2012) Fully automated synthesis and purification of 4-(2′-methoxyphenyl)-1-[2′-(N-2″-pyridinyl)-p-[18F]fluorobenzamido]ethylpiperazine. J Label Compd Radiopharm 55:120–124

    Article  CAS  Google Scholar 

  116. Le Bars D, Lemaire C, Ginovart N, Plenevaux A, Aerts J, Brihaye C, Hassoun W, Leviel V, Mekhsian P, Weissmann D, Pujol JF, Luxen A, Comar D (1998) High-yield radiosynthesis and preliminary in vivo evaluation of p-[18F]MPPF, a fluoro analog of WAY-100635. Nucl Med Biol 25:343–350

    Article  PubMed  Google Scholar 

  117. Broggini G, Orlandi M, Turconi A, Zoni C (2003) A new synthesis of flumazenil suitable for fluorine-18 labeling. Org Prep Proced Int 35:609–613

    Article  CAS  Google Scholar 

  118. Nasirzadeh M, Vaulina DD, Kuznetsova OF, Gomzina NA (2016) A novel approach to the synthesis of [18F]flumazenil, a radioligand for PET imaging of central benzodiazepine receptors. Russ Chem Bull 65:794–800

    Article  CAS  Google Scholar 

  119. Ryzhikov NN, Seneca N, Krasikova RN, Gomzina NA, Shchukin E, Fedorova OS, Vassiliev DA, Gulyás B, Hall H, Savic I, Halldin C (2005) Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol 32:109–116

    Article  PubMed  CAS  Google Scholar 

  120. Dollé F (2005) Fluorine-18-labelled fluoropyridines: advances in radiopharmaceutical design. Curr Pharm Des 11:3221–3235

    Article  PubMed  Google Scholar 

  121. Dollé F (2007) [18F]Fluoropyridines: From conventional radiotracers to the labeling of macromolecules such as proteins and oligonucleotides In: Schubiger P A, Lehmann L, Friebe M (ed) PET Chemistry: The Driving Force in Molecular Imaging. Ernst Schering Research Foundation Workshop 62 pp 113–157

  122. Ding YS, Liang F, Fowler JS, Kuhar MJ, Carroll FI (1997) Synthesis of [18F]norchlorofluoroepibatidine and its N-methyl derivative: new PET ligands for mapping nicotinic acetylcholine receptors. J Label Compd Radiopharm 39:827–832

    Article  CAS  Google Scholar 

  123. Dollé F, Valette H, Bottlaender M, Hinnen F, Vaufrey F, Guenther I, Crouzel C (1998) Synthesis of 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine, a highly potent radioligand for in vivo imaging central nicotinic acetylcholine receptors. J Label Compd Radiopharm 41:451–463

    Article  Google Scholar 

  124. Ding YS, Liu N, Wang T, Marecek J, Garza V, Ojima I, Fowler JS (2000) Synthesis and evaluation of 6-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine as a PET tracer for nicotinic acetylcholine receptors. Nucl Med Biol 27:381–389

    Article  PubMed  CAS  Google Scholar 

  125. Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, Sorger D, Kendziorra K, Meyer P, Steinbach J, Sabri O (2008) In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine. Synapse 62:205–218

    Article  PubMed  CAS  Google Scholar 

  126. Easwaramoortry B, Pichika R, Collins D, Potkin SG, Leslie FM, Mukherjee J (2007) Effect of acetylcholinesterase inhibitors on the binding of nicotinic α4β2 receptor PET radiotracer, 18F-nifene: a measure of acetylcholine competition. Synapse 61:29–36

    Article  CAS  Google Scholar 

  127. Pichika R, Easwaramoorthy B, Collins D, Christian BT, Shi B, Narayanan TK, Potkin SG, Mukherjee J (2006) Nicotinic α4β2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol 33:295–304

    Article  PubMed  CAS  Google Scholar 

  128. Ermert J, Coenen HH (2010) No-carrier-added [18F]fluorobenzene derivatives as intermediates for built-up radiosyntheses. Curr Radiopharm 3:127–160

    Article  CAS  Google Scholar 

  129. Lemaire C, Guillaume M, Cantineau R, Christiaens L (1990) No-Carrier-Added Regioselective Preparation of 6-[18F]Fluoro-L-Dopa. J Nucl Med 31:1247–1251

    PubMed  CAS  Google Scholar 

  130. Lemaire C, Damhaut P, Plenevaux A, Comar D (1994) Enantioselective synthesis of 6-[18F]fluoro-L-dopa from no- carrier-added fluorine-18-fluoride. J Nucl Med 35:1996–2002

    PubMed  CAS  Google Scholar 

  131. Lemaire C, Gillet S, Guillouet S, Plenevaux A, Aerts J, Luxen A (2004) Highly enantioselective synthesis of no-carrier-added 6-[18F]fluoro-L-dopa by chiral phase-transfer alkylation. Eur J Org Chem 13:2899–2904

    Article  CAS  Google Scholar 

  132. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, Lemaire CF (2013) Production at the curie level of no-carrier-added 6-18F-fluoro- l-dopa. J Nucl Med 54:1154–1161

    Article  PubMed  CAS  Google Scholar 

  133. Wagner FM, Ermert J, Coenen HH (2009) Three-Step, “One-Pot” Radiosynthesis of 6-Fluoro-3,4-Dihydroxy-l-Phenylalanine by Isotopic Exchange. J Nucl Med 50:1724–1729

    Article  PubMed  CAS  Google Scholar 

  134. Castillo Meleán J, Ermert J, Coenen HH (2011) Enantiospecific synthesis of 2-[18F]fluoro-l-phenylalanine and 2-[18F]fluoro-l-tyrosine by isotopic exchange. Org Biomol Chem 9:765–769

    Article  PubMed  Google Scholar 

  135. Castillo Meleán J, Humpert S, Ermert J, Coenen HH (2015) Stereoselective radiosynthesis of L- and D-3-[18F]fluoro-α-methyltyrosine. J Fluor Chem 178:202–207

    Article  CAS  Google Scholar 

  136. Martin R, Baumgart D, Hubner S, Juttler S, Saul S, Clausnitzer A, Mollitor J, Smits R, Höpping A, Müller M (2013) Automated nucleophilic one-pot synthesis of 18F-L-DOPA with high specific activity using the GE TRACERlab MXFDG. J Label Compd Radiopharm 56:S126–S126

    Google Scholar 

  137. Pretze M, Franck D, Kunkel F, Foßhag E, Wängler C, Wängler B (2017) Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[18F]fluoro-L-DOPA. Nucl Med Biol 45:35–42

    Article  PubMed  CAS  Google Scholar 

  138. Pike VW, Aigbirhio FI (1995) Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts—A novel single-step route to no-carrier-added [18]fluoroarenes. J Chem Soc, Chem Commun 21:2215–2216

    Article  Google Scholar 

  139. Pike VW (2018) Hypervalent aryliodine compounds as precursors for radiofluorination. J Label Compd Radiopharm 61:196–227

    Article  CAS  Google Scholar 

  140. Mu L, Fischer CR, Holland JP, Becaud J, Schubiger PA, Schibli R, Ametamey SM, Graham K, Stellfeld T, Dinkelborg LM, Lehmann L (2012) 18F-radiolabeling of aromatic compounds using triarylsulfonium salts. Eur J Org Chem 5:889–892

    Article  CAS  Google Scholar 

  141. Ermert J, Hocke C, Ludwig T, Gail R, Coenen H (2004) Comparison of pathways to the versatile synthon of no-carrier-added 1-bromo-4-[18F]fluorobenzene. J Label Compd Radiopharm 47:429–441

    Article  CAS  Google Scholar 

  142. Wüst FR, Kniess T (2003) Synthesis of 4-[18F]fluoroiodobenzene and its application in Sonogashira cross-coupling reactions. J Label Compd Radiopharm 46:699–713

    Article  CAS  Google Scholar 

  143. Ross TL, Ermert J, Hocke C, Coenen HH (2007) Nucleophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride. J Am Chem Soc 129:8018–8025

    Article  PubMed  CAS  Google Scholar 

  144. Way J, Bouvet V, Wuest F (2013) Synthesis of 4-[18F]fluorohalobenzenes and Palladium-mediated cross-coupling reactions for the synthesis of 18F-labeled radiotracers. Curr Org Chem 17:2138–2152

    Article  CAS  Google Scholar 

  145. Way JD, Wuest F (2014) Automated radiosynthesis of no-carrier-added 4-[18F]fluoroiodobenzene: a versatile building block in 18F radiochemistry. J Label Compd Radiopharm 57:104–109

    Article  CAS  Google Scholar 

  146. Yoshimura A, Zhdankin VV (2016) Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 116:3328–3435

    Article  PubMed  CAS  Google Scholar 

  147. Wang B, Qin L, Neumann KD, Uppaluri S, Cerny RL, DiMagno SG (2010) Improved arene fluorination methodology for I(III) salts. Org Lett 12:3352–3355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hu B, Va̅vere AL, Neumann KD, Shulkin BL, DiMagno SG, Snyder SE (2015) A practical, automated synthesis of meta-[18F]fluorobenzylguanidine for clinical use. ACS Chem Neurosci 6:1870–1879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Linstad EJ, Vavere AL, Hu B, Kempinger JJ, Snyder SE, DiMagno SG (2017) Thermolysis and radiofluorination of diaryliodonium salts derived from anilines. Org Biomol Chem 15:2246–2252

    Article  PubMed  CAS  Google Scholar 

  150. Petersen IN, Villadsen J, Hansen HD, Madsen J, Jensen AA, Gillings N, Lehel S, Herth MM, Knudsen GM, Kristensen JL (2017) 18F-Labelling of electron rich iodonium ylides: application to the radiosynthesis of potential 5-HT2A receptor PET ligands. Org Biomol Chem 15:4351–4358

    Article  PubMed  CAS  Google Scholar 

  151. Cardinale J, Ermert J, Humpert S, Coenen HH (2014) Iodonium ylides for one-step, no-carrier-added radiofluorination of electron rich arenes, exemplified with 4-(([18F]fluorophenoxy)-phenylmethyl) piperidine NET and SERT ligands. RSC Adv 4:17293–17299

    Article  CAS  Google Scholar 

  152. Rotstein BH, Stephenson NA, Vasdev N, Liang SH (2014) Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat Commun 5:4365

    Article  PubMed  CAS  Google Scholar 

  153. Rotstein BH, Wang L, Liu RY, Patteson J, Kwan EE, Vasdev N, Liang SH (2016) Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides. Chem Sci 7:4407–4417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJH (2014) Copper-catalyzed [18F]fluorination of (Mesityl)(aryl)iodonium salts. Org Lett 16:3224–3227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. McCammant MS, Thompson S, Brooks AF, Krska SW, Scott PJH, Sanford MS (2017) Cu-mediated C–H 18F-fluorination of electron-rich (hetero)arenes. Org Lett 19:3939–3942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Stephenson NA, Holland JP, Kassenbrock A, Yokell DL, Livni E, Liang SH, Vasdev N (2015) Iodonium ylide-mediated radiofluorination of 18F-FPEB and validation for human use. J Nucl Med 56:489–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Zlatopolskiy BD, Zischler J, Krapf P, Zarrad F, Urusova EA, Kordys E, Endepols H, Neumaier B (2015) Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem Eur J 21:5972–5979

    Article  PubMed  CAS  Google Scholar 

  158. Moon B, Park J, Lee H, Lee B, Kim S (2014) Routine production of [18F]flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5-year production report. Mol Imaging Biol 16:619–625

    Article  PubMed  Google Scholar 

  159. Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A (2016) Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand ([18F]UCB-H). J Med Chem 59:8955–8966

    Article  PubMed  CAS  Google Scholar 

  160. Beyzavi MH, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, Hooker JM, Ritter T (2017) 18F-deoxyfluorination of phenols via Ru π-complexes. ACS Cent Sci 3:944–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Strebl MG, Campbell AJ, Zhao W-N, Schroeder FA, Riley MM, Chindavong PS, Morin TM, Haggarty SJ, Wagner FF, Ritter T, Hooker JM (2017) HDAC6 brain mapping with [18F]bavarostat enabled by a Ru-mediated deoxyfluorination. ACS Cent Sci 3:1006–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM (2017) Synthesis of [18F]fluoroarenes by nucleophilic radiofluorination of N-arylsydnones. Ang Chem Int Ed 56:13006–13010

    Article  CAS  Google Scholar 

  163. Cardinale J, Ermert J, Kuegler F, Helfer A, Brandt MR, Coenen HH (2012) Carrier-effect on palladium-catalyzed, nucleophilic 18F-fluorination of aryl triflates. J Label Compd Radiopharm 55:450–453

    Article  CAS  Google Scholar 

  164. Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T (2011) A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334:639–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lee E, Hooker JM, Ritter T (2012) Nickel-mediated oxidative fluorination for PET with aqueous [18F]fluoride. J Am Chem Soc 134:17456–17458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zlatopolskiy BD, Zischler J, Urusova EA, Endepols H, Kordys E, Frauendorf H, Mottaghy FM, Neumaier B (2015) A practical one-pot synthesis of positron emission tomography (PET) tracers via nickel-mediated radiofluorination. ChemistryOpen 4:457–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hoover AJ, Lazari M, Ren H, Narayanam MK, Murphy JM, van Dam RM, Hooker JM, Ritter T (2016) A transmetalation reaction enables the synthesis of [18F]5-fluorouracil from [18F]fluoride for human PET imaging. Organometallics 35:1008–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Génicot C, Gouverneur V (2014) A general copper-mediated nucleophilic 18F fluorination of arenes. Ang Chem Int Ed 53:7751–7755

    Article  CAS  Google Scholar 

  169. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJH (2015) Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. Org Lett 17:5780–5783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJH (2016) Copper-Mediated Radiofluorination of Arylstannanes with [18F]KF. Org Lett 18:5440–5443

    Article  PubMed Central  CAS  Google Scholar 

  171. Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, Gruber S, Wilson TC, Taylor NJ, Cailly T, Schedler M, Collier TL, Passchier J, Smits R, Mollitor J, Hoepping A, Mueller M, Genicot C, Mercier J, Gouverneur V (2016) Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun 52:8361–8364

    Article  CAS  Google Scholar 

  172. Zhang Z, Lau J, Kuo H-T, Zhang C, Colpo N, Bénard F, Lin K-S (2017) Synthesis and evaluation of 18F-labeled CJ-042794 for imaging prostanoid EP4 receptor expression in cancer with positron emission tomography. Bioorg Med Chem Lett 27:2094–2098

    Article  PubMed  CAS  Google Scholar 

  173. Tang T, Gill HS, Ogasawara A, Tinianow JN, Vanderbilt AN, Williams S-P, Hatzivassiliou G, White S, Sandoval W, DeMent K, Wong M, Marik J (2017) Preparation and evaluation of L- and D-5-[18F]fluorotryptophan as PET imaging probes for indoleamine and tryptophan 2,3-dioxygenases. Nucl Med Biol 51:10–17

    Article  PubMed  CAS  Google Scholar 

  174. Giglio BC, Fei H, Wang M, Wang H, He L, Feng H, Wu Z, Lu HZL (2017) Synthesis of 5-[18F]Fluoro-α-methyl tryptophan: new Trp based PET agents. Theranostics 7:1524–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Schäfer D, Weiß P, Ermert J, Castillo Meleán J, Zarrad F, Neumaier B (2016) Preparation of no-carrier-added 6-[18F]Fluoro-l-tryptophan via Cu-mediated radiofluorination. Eur J Org Chem 2016:4621–4628

    Article  CAS  Google Scholar 

  176. Antuganov D, Zykov M, Timofeeva K, Antuganova Y, Orlovskaya V, Krasikova R (2017) Effect of pyridine addition on the efficiency of copper-mediated radiofluorination of aryl pinacol boronates. ChemistrySelect 2:7909–7912

    Article  CAS  Google Scholar 

  177. Zarrad F, Zlatopolskiy B, Krapf P, Zischler J, Neumaier B (2017) A practical method for the preparation of 18F-labeled aromatic amino acids from nucleophilic [18F]fluoride and stannyl precursors for electrophilic radiohalogenation. Molecules 22:2231

    Article  Google Scholar 

  178. Zlatopolskiy BD, Zischler J, Schäfer D, Urusova EA, Guliyev M, Bannykh O, Endepols H, Neumaier B (2018) Discovery of 7-[18F]fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo. J Med Chem 61:189–206

    Article  PubMed  CAS  Google Scholar 

  179. Politis M (2014) Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 10:708–722

    Article  PubMed  Google Scholar 

  180. Lussey-Lepoutre C, Hindié E, Montravers F, Detour J, Ribeiro MJS, Taïeb D, Imperiale A (2016) The current role of 18F-FDOPA PET for neuroendocrine tumor imaging. Med Nucl 40:20–30

    Google Scholar 

  181. Ermert J, Coenen HH (2013) Methods for 11C- and 18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Label Compd Radiopharm 56:225–236

    Article  CAS  Google Scholar 

  182. Edwards R, Wirth T (2015) [18F]6-fluoro-3,4-dihydroxy- l-phenylalanine – recent modern syntheses for an elusive radiotracer. J Label Compd Radiopharm 58:183–187

    Article  CAS  Google Scholar 

  183. Forsback S, Eskola O, Haaparanta M, Bergmann J, Solin O (2008) Electrophilic synthesis of 6-[18F]fluoro-L-DOPA using post-target produced [18F]F2. Radiochim Acta 96:845–848

    Article  CAS  Google Scholar 

  184. Kuik WJ, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RAJO, DiMagno SG, Elsinga PH (2015) In vivo biodistribution of no-carrier-added 6-18F-fluoro-3, 4-dihydroxy-l-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med 56:106–112

    Article  PubMed  CAS  Google Scholar 

  185. Kienzle GJ, Reischl G, Machulla HJ (2005) Electrochemical radiofluorination. 3. Direct labeling of phenylalanine derivatives with [18F]fluoride after anodic oxidation. J Label Compd Radiopharm 48:259–273

    Article  CAS  Google Scholar 

  186. He Q, Wang Y, Alfeazi I, Sadeghi S (2014) Electrochemical nucleophilic synthesis of di-tert-butyl-(4-[18F]fluoro-1,2-phenylene)-dicarbonate. Appl Rad Isot 92:52–57

    Article  CAS  Google Scholar 

  187. He Q, Alfeazi I, Sadeghi S (2014) No-carrier-added electrochemical nucleophilic radiofluorination of aromatics. J Radioanal Nucl Chem 303:1037–1040

    Article  CAS  Google Scholar 

  188. Lebedev A, Jiao J, Lee JS, Yang F, Allison N, Herschman H, Sadeghi S (2017) Radiochemistry on electrodes: synthesis of an 18F-labelled and in vivo stable COX-2 inhibitor. PLoS ONE 12:18

    Article  CAS  Google Scholar 

  189. Krasikova R (2013) PET radiochemistry automation: state of the art and future trends in 18F-nucleophilic fluorination. Curr Org Chem 17:2097–2107

    Article  CAS  Google Scholar 

  190. Anzellotti A, McFarland A, Ferguson D, Olson K (2013) Towards the full automation of QC release tests for [18F]fluoride-labeled radiotracers. Curr Org Chem 17:2153–2158

    Article  CAS  Google Scholar 

  191. Shao X, Hoareau R, Hockley BG, Tluczek LJM, Henderson BD, Padgett HC, Scott PJH (2011) Highlighting the versatility of the tracerlab synthesis modules. Part 1: fully automated production of 18F-labelled radiopharmaceuticals using a Tracerlab FXFN. J Label Compd Radiopharm 54:292–307

    Article  CAS  Google Scholar 

  192. Iwata R, Ido T, Takahashi T, Monma M (1984) Automated synthesis system for production of 2-deoxy-2-[18F]fluoro-d-glucose with computer control. Int J Appl Rad Isot 35:445–454

    Article  CAS  Google Scholar 

  193. Padgett HC, Schmidt DG, Luxen A, Bida GT, Satyamurthy N, Barrio JR (1989) Computer-controlled radiochemical synthesis: a chemistry process control unit for the automated production of radiochemicals. Int J Appl Radiat Isot 40:433–445

    Article  CAS  Google Scholar 

  194. Herman H, Flores G, Quinn K, Eddings M, Olma S, Moore MD, Ding H, Bobinski KP, Wang M, Williams D, Wiliams D, Shen CK-F, Phelps ME, van Dam RM (2013) Plug-and-play modules for flexible radiosynthesis. Appl Rad Isot 78:113–124

    Article  CAS  Google Scholar 

  195. Blom E, Koziorowski J (2014) Automated synthesis of [18F]FMISO on IBA Synthera((R)). J Radioanal Nucl Chem 299:265–270

    Article  CAS  Google Scholar 

  196. Lee SJ, Hyun JS, Oh SJ, Yu KH, Ryu JS (2013) Development of a new precursor-minimizing base control method and its application for the automated synthesis and SPE purification of 18F-fluoromisonidazole (18F-FMISO). J Label Compd Radiopharm 56:731–735

    Article  CAS  Google Scholar 

  197. Collins J, Waldmann CM, Drake C, Slavik R, Ha NS, Sergeev M, Lazari M, Shen B, Chin FT, Moore M, Sadeghi S, Phelps ME, Murphy JM, van Dam RM (2017) Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci 114:11309–11314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. von Guggenberg E, Sader JA, Wilson JS, Shahhosseini S, Koslowsky I, Wuest F, Mercer JR (2009) Automated synthesis of an 18F-labelled pyridine-based alkylating agent for high yield oligonucleotide conjugation. Appl Rad Isot 67:1670–1675

    Article  CAS  Google Scholar 

  199. Allott L, Da Pieve C, Turton DR, Smith G (2017) A general [18F]AlF radiochemistry procedure on two automated synthesis platforms. React Chem Eng 2:68–74

    Article  CAS  Google Scholar 

  200. Ackermann U, Yeoh SD, Sachinidis JI, Poniger SS, Scott AM, Tochon-Danguy HJ (2011) A simplified protocol for the automated production of succinimidyl 4-[18F]fluorobenzoate on an IBA Synthera module. J Label Compd Radiopharm 54:671–673

    Article  CAS  Google Scholar 

  201. Sachinidis JI, Poniger S, Tochon-Danguy HJ (2010) Automation for optimised production of fluorine-18-Labelled radiopharmaceuticals. Curr Radiopharm 3:248–253

    Article  CAS  Google Scholar 

  202. Lazari M, Collins J, Shen B, Farhoud M, Yeh D, Maraglia B, Chin FT, Nathanson DA, Moore M, van Dam RM (2014) Fully automated production of diverse 18F-labeled PET tracers on the ELIXYS multireactor radiosynthesizer without hardware modification. J Nucl Med Technol 42:203–210

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yao CH, Lin KJ, Weng CC, Hsiao IT, Ting YS, Yen TC, Jan TR, Skovronsky D, Kung MP, Wey SP (2010) GMP-compliant automated synthesis of [18F]AV-45 (Florbetapir F 18) for imaging beta-amyloid plaques in human brain. Appl Rad Isot 68:2293–2297

    Article  CAS  Google Scholar 

  204. Liu YJ, Zhu L, Plossl K, Choi SR, Qiao HW, Sun XT, Li S, Zha ZH, Kung HF (2010) Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer’s disease. Nucl Med Biol 37:917–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Wang HL, Guo XY, Jiang SD, Tang GH (2013) Automated synthesis of [18F]Florbetaben as Alzheimer’s disease imaging agent based on a synthesis module system. Appl Rad Isot 71:41–46

    Article  CAS  Google Scholar 

  206. Turton DR, Betts HM, Dutton D, Perkins AC (2015) Automated radiosynthesis of GMP quality [18F]HX4 for PET imaging of hypoxia. Nucl Med Biol 42:494–498

    Article  PubMed  CAS  Google Scholar 

  207. Thomae D, Morley TJ, Hamill T, Carroll VM, Papin C, Twardy NM, Lee HS, Hargreaves R, Baldwin RM, Tamagnan G, Alagille D (2014) Automated one-step radiosynthesis of the CB1 receptor imaging agent [18F]MK-9470. J Label Compd Radiopharm 57:611–614

    Article  CAS  Google Scholar 

  208. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges A-M, Marx H, Hesse R, Weber K, Smits R, Hoepping A, Müller M, Neels O, Kopka K (2017) Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals 10:77

    Article  PubMed Central  Google Scholar 

  209. Rensch C, Jackson A, Lindner S, Salvamoser R, Samper V, Riese S, Bartenstein P, Wängler C, Wängler B (2013) Microfluidics: a groundbreaking technology for PET tracer production? Molecules 18:7930–7956

    Article  PubMed  CAS  Google Scholar 

  210. Pascali G, Salvadori PA (2016) Opportunities and challenges in the utilization of microfluidic technologies to the production of radiopharmaceuticals. Chimica Oggi-Chem Today 34:28–32

    CAS  Google Scholar 

  211. Elizarov AM (2009) Microreactors for radiopharmaceutical synthesis. Lab Chip 9:1326–1333

    Article  PubMed  CAS  Google Scholar 

  212. Keng PY, van Dam RM (2015) Digital microfluidics: a new paradigm for radiochemistry. Mol Imaging 14(7290):00030

    Google Scholar 

  213. Miller PW, deMello AJ, Gee AD (2010) Application of microfluidics to the ultra-rapid preparation of fluorine-18 labelled compounds. Curr Radiopharm 3:254–262

    Article  CAS  Google Scholar 

  214. Wang MW, Lin WY, Liu K, Masterman-Smith M, Shen CKF (2010) Microfluidics for positron emission tomography probe development. Mol Imaging 9:175–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Hargrove K, Jones GB (2014) Accelerated labeling methods and syntheses of radiotracers utilizing microfluidic technology. Curr Radiopharm 7:36–48

    Article  PubMed  CAS  Google Scholar 

  216. Lebedev A, Miraghaie R, Kotta K, Ball CE, Zhang J, Buchsbaum MS, Kolb HC, Elizarov A (2013) Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. Lab Chip 13:136–145

    Article  PubMed  CAS  Google Scholar 

  217. Lee C-C, Sui G, Elizarov A, Shu CJ, Shin Y-S, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng H-R (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:1793–1796

    Article  PubMed  CAS  Google Scholar 

  218. Wong R, Iwata R, Saiki H, Furumoto S, Ishikawa Y, Ozeki E (2012) Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds. Appl Rad Isot 70:193–199

    Article  CAS  Google Scholar 

  219. Fiel SA, Yang H, Schaffer P, Weng S, Inkster JAH, Wong MCK, Li PCH (2015) Magnetic droplet microfluidics as a platform for the concentration of [18F]fluoride and radiosynthesis of sulfonyl [18F]fluoride. ACS Appl Mater Interfaces 7:12923–12929

    Article  PubMed  CAS  Google Scholar 

  220. Cvetkovic BZ, Lade O, Marra L, Arima V, Rinaldi R, Dittrich PS (2012) Nitrogen supported solvent evaporation using continuous-flow microfluidics. RSC Adv 2:11117–11122

    Article  CAS  Google Scholar 

  221. Pascali G, De Simone M, Matesic L, Greguric I, Salvadori PA (2014) Tolerance of water in microfluidic radiofluorinations: a potential methodological shift? J Flow Chem 4:86–91

    Article  CAS  Google Scholar 

  222. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  PubMed  CAS  Google Scholar 

  223. Pascali G, Mazzone G, Saccomanni G, Manera C, Salvadori PA (2010) Microfluidic approach for fast labeling optimization and dose-on-demand implementation. Nucl Med Biol 37:547–555

    Article  PubMed  CAS  Google Scholar 

  224. Tarn MD, Pascali G, De Leonardis F, Watts P, Salvadori PA, Pamme N (2013) Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. J Chromatogr A 1280:117–121

    Article  PubMed  CAS  Google Scholar 

  225. Chao PH, Collins J, Argus JP, Tseng WY, Lee JT, van Dam RM (2017) Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. Lab Chip 17:1802–1816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Wester HJ, Schoultz BW, Hultsch C, Henriksen G (2009) Fast and repetitive in-capillary production of [18F]FDG. Eur J Nucl Med Mol Imaging 36:653–658

    Article  PubMed  CAS  Google Scholar 

  227. Kimura H, Tomatsu K, Saiki H, Arimitsu K, Ono M, Kawashima H, Iwata R, Nakanishi H, Ozeki E, Kuge Y, Saji H (2016) Continuous-flow synthesis of N-succinimidyl 4-[18F]fluorobenzoate using a single microfluidic chip. PLoS ONE 11:e0159303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Pascali G, Watts P, Salvadori PA (2013) Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 40:776–787

    Article  PubMed  CAS  Google Scholar 

  229. Rensch C, Lindner S, Salvamoser R, Leidner S, Bold C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wangler C, Wangler B (2014) A solvent resistant lab-on-chip platform for radiochemistry applications. Lab Chip 14:2556–2564

    Article  PubMed  CAS  Google Scholar 

  230. Koag MC, Kim H-K, Kim AS (2014) Efficient microscale synthesis of [18F]-2-fluoro-2-deoxy-d-glucose. Chem Eng J 258:62–68

    Article  CAS  Google Scholar 

  231. Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Perrie W, Hamblett I, Dekker B, Zweit J (2006) Microfluidic reactor for the radiosynthesis of PET radiotracers. Appl Rad Isot 64:325–332

    Article  CAS  Google Scholar 

  232. Arima V, Pascali G, Lade O, Kretschmer HR, Bernsdorf I, Hammond V, Watts P, De Leonardis F, Tarn MD, Pamme N, Cvetkovic BZ, Dittrich PS, Vasovic N, Duane R, Jaksic A, Zacheo A, Zizzari A, Marra L, Perrone E, Salvadori PA, Rinaldi R (2013) Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab Chip 13:2328–2336

    Article  PubMed  CAS  Google Scholar 

  233. Keng PY, Chen SP, Ding HJ, Sadeghi S, Shah GJ, Dooraghi A, Phelps ME, Satyamurthy N, Chatziioannou AF, Kim CJ, van Dama RM (2012) Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci USA 109:690–695

    Article  PubMed  Google Scholar 

  234. Javed MR, Chen S, Lei J, Collins J, Sergeev M, Kim H-K, Kim C-J, van Dam RM, Keng PY (2014) High yield and high specific activity synthesis of [18F]fallypride in a batch microfluidic reactor for micro-PET imaging. Chem Commun 50:1192–1194

    Article  CAS  Google Scholar 

  235. Ungersboeck J, Richter S, Collier L, Mitterhauser M, Karanikas G, Lanzenberger R, Dudczak R, Wadsak W (2012) Radiolabeling of [18F]altanserin — a microfluidic approach. Nucl Med Biol 39:1087–1092

    Article  PubMed  CAS  Google Scholar 

  236. Javed MR, Chen S, Kim HK, Wei L, Czernin J, Kim CJ, van Dam RM, Keng PY (2014) Efficient radiosynthesis of 3 ‘-deoxy-3 ‘-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med 55:321–328

    Article  PubMed  CAS  Google Scholar 

  237. Koag MC, Kim H-K, Kim AS (2014) Fast and efficient microscale radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine. J Fluor Chem 166:104–109

    Article  CAS  Google Scholar 

  238. Yokell DL, Leece AK, Lebedev A, Miraghaie R, Ball CE, Zhang J, Kolb H, Elizarov A, Mahmood U (2012) Microfluidic single vessel production of hypoxia tracer 1H-1-(3-[18F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole ([18F]-FMISO). Appl Rad Isot 70:2313–2316

    Article  CAS  Google Scholar 

  239. Zheng M-Q, Collier L, Bois F, Kelada OJ, Hammond K, Ropchan J, Akula MR, Carlson DJ, Kabalka GW, Huang Y (2015) Synthesis of [18F]FMISO in a flow-through microfluidic reactor: development and clinical application. Nucl Med Biol 42:578–584

    Article  PubMed  CAS  Google Scholar 

  240. Liang SH, Yokell DL, Normandin MD, Rice PA, Jackson RN, Shoup TM, Brady TJ, Fakhri GE, Collier TL, Vasdev N (2014) First human use of a radiopharmaceutical prepared by continuous-flow microfluidic radiofluorination: proof of concept with the tau imaging agent [18F]T807. Mol Imaging 13:1–5  

    Google Scholar 

  241. Salvadori AP (2008) Radiopharmaceuticals, drug development and pharmaceutical regulations in Europe. Curr Radiopharm 1:7–11

    Article  CAS  Google Scholar 

  242. Ha NS, Sadeghi S, van Dam RM (2017) Recent Progress toward microfluidic quality control testing of radiopharmaceuticals. Micromachines 8:337

    Article  Google Scholar 

  243. Taggart MP, Tarn MD, Esfahani MMN, Schofield DM, Brown NJ, Archibald SJ, Deakin T, Pamme N, Thompson LF (2016) Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. Lab Chip 16:1605–1616

    Article  PubMed  CAS  Google Scholar 

  244. Koziorowski J (2010) A simple method for the quality control of [18F]FDG. Appl Rad Isot 68:1740–1742

    Article  CAS  Google Scholar 

  245. Nakao R, Ito T, Yamaguchi M, Suzuki K (2008) Simultaneous analysis of FDG, ClDG and Kryptofix 2.2.2 in [18F]FDG preparation by high-performance liquid chromatography with UV detection. Nucl Med Biol 35:239–244

    Article  PubMed  CAS  Google Scholar 

  246. Mihon M, Tuta CS, Ion AC, Koziorowski J, Niculae D, Lavric V, Draganescu D (2017) Influence of the separation parameters applied for determination of impurities FDG and CLDG. Farmacia 65:153–158

    Google Scholar 

  247. Cheung S, Ly J, Lazari M, Sadeghi S, Keng PY, van Dam RM (2014) The separation and detection of PET tracers via capillary electrophoresis for chemical identity and purity analysis. J Pharm Biomed Anal 94:12–18

    Article  PubMed  CAS  Google Scholar 

  248. Huang Y-Y, Taylor S, Koziorowski J, Chang Y-N, Kao W-H, Tzen K-Y, Shiue C-Y (2016) A two-center study for the quality control of [18F]FDG using FASTlab phosphate cassettes. Ann Nucl Med 30:563–571

    Article  PubMed  CAS  Google Scholar 

  249. Chaly T, Dahl JR (1989) Thin layer chromatographic detection of Kryptofix 2.2.2 in the routine synthesis of [18F]2-fluoro-2-deoxy-d-glucose. Nucl Med Biol 16:385–387

    CAS  Google Scholar 

  250. Mock BH, Winkle W, Vavrek MT (1997) A color spot test for the detection of Kryptofix 2.2.2 in [18F]FDG preparations. Nucl Med Biol 24:193–195

    Article  PubMed  CAS  Google Scholar 

  251. Scott PJH, Kilbourn MR (2007) Determination of residual Kryptofix 2.2.2 levels in [18F]-labeled radiopharmaceuticals for human use. Appl Rad Isot 65:1359–1362

    Article  CAS  Google Scholar 

  252. Rokka J, Grönroos TJ, Viljanen T, Solin O, Haaparanta-Solin M (2017) HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples. J Chromatogr B 1048:140–149

    Article  CAS  Google Scholar 

  253. Ferrieri RA, Schlyer DJ, Alexoff DL, Fowler JS, Wolf AP (1993) Direct analysis of Kryptofix 2.2.2 in 18FDG by gas chromatography using a nitrogen-selective detector. Nucl Med Biol 20:367–369

    Article  PubMed  CAS  Google Scholar 

  254. Ma Y, Huang BX, Channing MA, Eckelman WC (2002) Quantification of Kryptofix 2.2.2 in 2-[18F]FDG and other radiopharmaceuticals by LC/MS/MS. Nucl Med Biol 29:125–129

    Article  PubMed  CAS  Google Scholar 

  255. Anzellotti AI, McFarland AR, Olson KF (2013) A rapid and simple colorimetric test for 2,2,2-cryptand (Kryptofix 2.2.2.) in solution. Anal Method 5:4317–4320

    Article  CAS  Google Scholar 

  256. Campbell MG, Mercier J, Genicot C, Gouverneur V, Hooker JM, Ritter T (2017) Bridging the gaps in F-18 PET tracer development. Nat Chem 9:1–3

    Article  CAS  Google Scholar 

  257. Zhang X, Dunlow R, Blackman BN, Swenson RE (2018) Optimization of 18F-syntheses using 19F-reagents at tracer-level concentrations and LC-MS/MS analysis: improved synthesis of [18F]MDL100907. J Label Compd Radiopharm 61:427–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Bernd Neumaier for his interest and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz H. Coenen or Johannes Ermert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coenen, H.H., Ermert, J. 18F-labelling innovations and their potential for clinical application. Clin Transl Imaging 6, 169–193 (2018). https://doi.org/10.1007/s40336-018-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-018-0280-0

Keywords

Navigation