Skip to main content
Log in

Volume formula for N-fold reduced products

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Let G be a semisimple compact connected Lie group. An N-fold reduced product of G is the symplectic quotient of the Hamiltonian system of the Cartesian product of N coadjoint orbits of G under diagonal coadjoint action of G. Under appropriate assumptions, it is a symplectic orbifold. Using the technique of nonabelian localization and the residue formula of Jeffrey and Kirwan, we investigate the symplectic volume of an N-fold reduced product of G. Suzuki and Takakura gave a volume formula for the N-fold reduced product of \( \mathbf {SU}(3) \) in [25] by using geometric quantization and the Riemann–Roch formula. We compare our volume formula with theirs and prove that our volume formula agrees with theirs in the case of triple reduced products of \( \mathbf {SU}(3) \).

Résumé

Soit G un groupe de Lie compact connexe semi-simple. Un produit réduit de G (N fois) est la réduction sympectique du système Hamiltonien du produit de N orbites coadjointes de G sous l’action coadjointe diagonale de G. Vu certaines hypothèses, c’est un orbi-espace symplectique. Nous utilisons la localisation non-abélienne et la formule de résidus de Jeffrey et Kirwan pour étudier le volume symplectique du produit réduit de SU(3). Suzuki et Takakura ont donné une formule pour le volume du produit réduit (N-fois) de \(\mathbf {SU}(3)\) dans [25] en se servant de la quantification géométrique et la formule de Riemann–Roch. Nous considérons leur formule par rapport à la notre. Nous démontrons que notre formule accorde avec leur formule dans le cas \(N=3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah and R. Bott: The Moment Map and Equivariant Cohomology, Topology 23 (1984), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Audin: Torus Actions on Symplectic Manifolds, Second revised edition, Progress in Mathematics, Volume 93, 2004, Springer Basel AG.

  3. N. Berline, E. Getzler and M. Vergne: Heat Kernels and Dirac Operators, Grundlehren Text Editions, 2004, Springer-Verlag Berlin Heidelberg.

    MATH  Google Scholar 

  4. N. Berline and M. Vergne: Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982), 539–541.

    MathSciNet  MATH  Google Scholar 

  5. N. Berline and M. Vergne: Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983), 539–549.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Cartan: Notions d’algèbre différentielle; applications aux variétés où opère un groupe de Lie. In Colloque de Topologie, pages 15–27. C.B.R.M., Bruxelles, 1950.

  7. H. Cartan: La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie, CBRM Bruxelles (1950) 57–71.

    Google Scholar 

  8. J. J. Duistermaat: Equivariant cohomology and stationary phase, preprint 817, University of Utrecht, August 1993.

  9. J. J. Duistermaat and G. J. Heckman: On the Variation in the Cohomology of the Symplectic Form of the Reduced Phase Space, Invent. Math. 69, 259–268 (1982); ibid., Addendum to “On the variation in the cohomology of the symplectic form of the reduced phase space”. Invent. math., 72:153–158, 1983.

  10. M. J. Gotay: On coisotropic embeddings of presymplectic manifolds, Proc. Amer. Math. Soc. 84 (1982), 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Guillemin, E. Lerman and S. Sternberg: On the Kostant multiplicity formula. J. Geom. Phys., 5:721–750, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. W. Guillemin, E. Lerman and S. Sternberg: Symplectic Fibrations and Multiplicity Diagrams, 1996, Cambridge University Press.

  13. V. Guillemin and E. Prato: Heckman, Kostant and Steinberg formulas for symplectic manifolds, Adv. Math. 82 (1990), 160–179.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. W. Guillemin and S. Sternberg: Symplectic Techniques in Physics, ,Cambridge University Press, 1990.

  15. J-C. Hausmann and A. Knutson: The cohomology ring of polygon spaces, Ann. Inst. Fourier 48 (1998), 281–321.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Hörmander: The analysis of linear partial differential operators I, Grundlehren, Vol. 256, Springer, Berlin (1983).

    MATH  Google Scholar 

  17. L. C. Jeffrey: Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann. 298 (1994), 667–692.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. C. Jeffrey and J. Ji: Intersection pairings in the \( N \)-fold reduced product of adjoint orbits, J. Math. Phys. 60, 082901 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. C. Jeffrey and F. C. Kirwan: Localization for Nonabelian Group Actions, Topology 34 (1995), pp. 291–327.

    Article  MathSciNet  MATH  Google Scholar 

  20. L.C. Jeffrey, F.C. Kirwan: Localization and the quantization conjecture, Topology 36 (1997)

  21. F. Kirwan: Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton (1984).

    MATH  Google Scholar 

  22. Y. Kamiyama and M. Tezuka: Symplectic Volume of the Moduli Space of Spatial Polygons, J. Math. Kyoto Univ. (JMKYAZ) 39-3 (1999), 557–575.

    MathSciNet  MATH  Google Scholar 

  23. C.-M. Marle: Modèle d’action hamiltonienne d’un groupe de Lie sur une variété symplectique, in Rendiconti del Seminario Matematico, Università e Politechnico, Torino Vol. 43 (1985) pp. 227–251.

    MATH  Google Scholar 

  24. I. Satake: On a generalization of the notion of manifold. Proc. Nat. Acad. Sc., 42,359–363 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Suzuki and T. Takakura: Symplectic Volumes of Certain Symplectic Quotients Associated with the Special Unitary Group of Degree Three, Tokyo J. Math. 31 (2008), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Suzuki and T. Takakura: Asymptotic dimension of invariant subspace in tensor product representation of compact Lie group, J. Math. Soc. Japan 61 (3) (2009), 921–969.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Witten: Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303–368.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jeffrey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Jeffrey is partially supported by an NSERC Discovery Grant. J. Ji is partially supported by the University of Toronto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffrey, L., Ji, J. Volume formula for N-fold reduced products. Ann. Math. Québec 47, 263–294 (2023). https://doi.org/10.1007/s40316-021-00171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00171-9

Keywords

Mathematics Subject Classification

Navigation