Skip to main content
Log in

Robust time-consistent strategy for the defined contribution pension plan with a minimum guarantee under ambiguity

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the robust time-consistent investment strategy for the defined contribution pension plan with a minimum guarantee in a stochastic interest rate and stochastic inflation environment under the mean-variance criterion. To protect the purchasing power of pension members after retirement, the amount of the minimum guarantee is assumed to be adjusted with the stochastic interest rate and inflation level in the model. The fund manager is considered as ambiguity averse, and her objective is to prevent herself from the worst-case scenario and ensure that the fund wealth exceeds the minimum guarantee at retirement. The ambiguity-averse manager is allowed to invest in a financial market consisting of four assets: a risk-free asset, a nominal zero-coupon bond, an inflation-indexed bond and a stock. The nominal zero-coupon bond and the inflation-indexed bond are designed to hedge against interest rate risk and inflation risk. Following the robust optimal control theory, both the robust time-consistent strategy and the equilibrium value function are derived by an introduction of an auxiliary problem. Some degenerate cases are also provided. Finally, a numerical simulation demonstrates the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No data sets are used in this paper.

References

  • Baltas I, Dopierala L, Kolodziejczyk K, Szczepański M, Weber G, Yannacopoulos A (2022) Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty. Eur J Oper Res 298:1162–1174

    Article  MathSciNet  MATH  Google Scholar 

  • Boulier J, Huang S, Taillard G (2001) Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund. Insur Math Econ 28:173–189

    Article  MathSciNet  MATH  Google Scholar 

  • Chang H, Li J (2023) Robust equilibrium strategy for DC pension plan with the return of premiums clauses in a jump-diffusion model. Optimization 72:463–492

    Article  MathSciNet  MATH  Google Scholar 

  • Chang H, Wang C, Fang Z, Ma D (2020) Defined contribution pension planning with a stochastic interest rate and mean-reverting returns under the hyperbolic absolute risk aversion preference. IMA J Manag Math 31:167–189

    MathSciNet  MATH  Google Scholar 

  • Chang H, Li J, Zhao H (2022) Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial and Management Optimization 18:1393–1423

    Article  MathSciNet  MATH  Google Scholar 

  • Deelstra G, Grasselli M, Koehl P (2004) Optimal design of the guarantee for defined contribution funds. J Econ Dyn Control 28:2239–2260

    Article  MathSciNet  MATH  Google Scholar 

  • Deelstra G, Grasselli M, Koehl P (2003) Optimal investment strategies in the presence of a minimum guarantee. Insure Math Econ 33:189–207

    Article  MathSciNet  MATH  Google Scholar 

  • Gao J (2009) Optimal portfolios for DC pension plans under a CEV model. Insure Math Econ 44:79–490

    MathSciNet  MATH  Google Scholar 

  • Giacinto M, Federico S, Gozzi F, Vigna E (2014) Income drawdown option with minimum guarantee. Eur J Oper Res 234:610–624

    Article  MATH  Google Scholar 

  • Guan G, Liang Z (2014) Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insure Math Econ 57:58–66

    Article  MathSciNet  MATH  Google Scholar 

  • Guan G, Liang Z (2015) Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns. Insure Math Econ 61:99–109

    Article  MathSciNet  MATH  Google Scholar 

  • Han N, Hung M (2012) Optimal asset allocation for DC pension plans under inflation. Insure Math Econ 51:172–181

    Article  MathSciNet  MATH  Google Scholar 

  • He L, Liang Z (2013) Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework. Insure Math Econ 53:643–649

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkby J, Aguilar J (2023) Valuation and optimal surrender of variable annuities with guaranteed minimum benefits and periodic fees. Scand Actuar J 6:624–654

    Article  MathSciNet  MATH  Google Scholar 

  • Lai C, Liu S, Wu Y (2021) Optimal portfolio selection for a defined-contribution plan under two administrative fees and return of premium clauses. J Comput Appl Math. https://doi.org/10.1016/j.cam.2021.113694

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Bi J, Hu M (2021) Alpha-robust mean-variance investment strategy for DC pension plan with uncertainty about jump-diffusion risk. RAIRO-Oper Res 55:S2983–S2997

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Rong X, Zhao H (2015) Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk. Insure Math Econ 64:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Shen Y, Zeng Y (2018) Dynamic derivative-based investment strategy for mean-variance asset-liability management with stochastic volatility. Insure Math Econ 78:72–86

    Article  MathSciNet  MATH  Google Scholar 

  • Maenhout P (2004) Robust portfolio rules and asset pricing. Rev Financ Stud 17:951–983

    Article  Google Scholar 

  • Maenhout P (2006) Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium. J Econ Theory 128:136–163

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  • Menoncin F, Vigna E (2017) Mean-variance target-based optimisation for defined contribution pension schemes in a stochastic framework. Insure Math Econ 76:172–184

    Article  MathSciNet  MATH  Google Scholar 

  • Mwanakatwe P, Song L, Hagenimana E, Wang X (2019) Management strategies for a defined contribution pension fund under the hybrid stochastic volatility model. Comput Appl Math 38:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Peng X, Chen F (2021) Mean-variance asset-liability management with partial information and uncertain time horizon. Optimization 70:1609–1636

    Article  MathSciNet  MATH  Google Scholar 

  • Pun C (2018) Robust time-inconsistent stochastic control problems. Automatica 94:249–257

    Article  MathSciNet  MATH  Google Scholar 

  • Tang M, Chen S, Lai G, Wu T (2018) Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee. Insure Math Econ 78:87–104

    Article  MathSciNet  MATH  Google Scholar 

  • Walter W (1998) Ordinary differential equations, Vol. 182. Springer, New York

  • Wang L, Chen Z, Yang P (2021a) Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. J Ind Manag Optim 17:1203–1233

    Article  MathSciNet  MATH  Google Scholar 

  • Wang P, Li Z, Sun J (2021b) Robust portfolio choice for a DC pension plan with inflation risk and mean-reverting risk premium under ambiguity. Optimization 70:191–224

    Article  MathSciNet  MATH  Google Scholar 

  • Wang P, Li Z (2018) Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility. Insure Math Econ 80:67–83

    Article  MathSciNet  MATH  Google Scholar 

  • Wang P, Shen Y, Zhang L, Kang Y (2021c) Equilibrium investment strategy for a DC pension plan with learning about stock return predictability. Insure Math Econ 100:384–407

    Article  MathSciNet  MATH  Google Scholar 

  • Yan T, Han B, Pun C, Wong H (2020) Robust time-consistent mean-variance portfolio selection problem with multivariate stochastic volatility. Math Financ Econ 14:699–724

    Article  MathSciNet  MATH  Google Scholar 

  • Yan M, Cao Z, Wang T et al (2022) Robust optimal investment strategy of DC pension plans with stochastic salary and a return of premiums clause. Commun Stat Theory Methods 51:7980–8011

    Article  MathSciNet  MATH  Google Scholar 

  • Yao H, Chen P, Li X (2016) Multi-period defined contribution pension funds investment management with regime-switching and mortality risk. Insure Math Econ 71:103–113

    Article  MathSciNet  MATH  Google Scholar 

  • Yao H, Lai Y, Ma Q, Jian M (2014) Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework. Insure Math Econ 54:84–92

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y, Mi H, Chen H (2022) Mean-variance problem for an insurer with dependent risks and stochastic interest rate in a jump-diffusion market. Optimization 71:2789–2818

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng Y, Li D, Chen Z, Yang Z (2018) Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility. J Econ Dyn Control 88:70–103

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng Y, Li D, Gu A (2016) Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insure Math Econ 66:138–152

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Li D, Lai Y (2020) Equilibrium investment strategy for a defined contribution pension plan under stochastic interest rate and stochastic volatility. J Comput Appl Math. https://doi.org/10.1016/j.cam.2019.112536

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao H, Shen Y, Zeng Y, Zhang W (2019) Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean-variance insurer with ambiguity aversion. Insure Math Econ 88:159–180

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for comments and suggestions for improving the quality of this paper.

Funding

This research is supported by the National Social Science Fund of China (No.21FJYB042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chang.

Ethics declarations

Conflict of interest

The authors declare that we have no relevant financial or non-financial competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorem 3.6

Appendix A. Proof of Theorem 3.6

According to Eqs. (38) and (37), the HJB equation can be written as

$$\begin{aligned} \begin{aligned} \underset{\hat{\pi }\in \Pi }{\mathop {\sup }}\,\underset{{\mathbb {Q}}\in Q}{\mathop {\inf }}\,&\left\{ {{V}_{t}}+y\left[ {{{\hat{\pi }}}^{\top }}\Gamma \left( \Lambda +\varphi \right) +r \right] {{V}_{y}}+p\left( k+\sigma _{P}^{\top }\varphi \right) {{V}_{p}}+\left( a-br+\sigma _{R}^{\top }\varphi \right) {{V}_{r}} \right. \\&+\frac{1}{2}{{y}^{2}}{{{\hat{\pi }}}^{\top }}\Sigma \hat{\pi }\left( {{V}_{yy}}-\gamma g_{y}^{2} \right) +\frac{1}{2}{{p}^{2}}{{\left\| {{\sigma }_{P}} \right\| }^{2}}\left( {{V}_{pp}}-\gamma g_{p}^{2} \right) +\frac{1}{2}{{\left\| {{\sigma }_{R}} \right\| }^{2}}\left( {{V}_{rr}}-\gamma g_{r}^{2} \right) \\&+yp{{{\hat{\pi }}}^{\top }}\Gamma {{\sigma }_{P}}\left( {{V}_{yp}}-\gamma {{g}_{y}}{{g}_{p}} \right) +y{{{\hat{\pi }}}^{\top }}\Gamma {{\sigma }_{R}}\left( {{V}_{yr}}-\gamma {{g}_{y}}{{g}_{r}} \right) \\&\text { }+p\sigma _{P}^{\top }{{\sigma }_{R}}\left( {{V}_{pr}}-\gamma {{g}_{p}}{{g}_{r}} \right) +\frac{1}{2\xi }\left. {{\left\| \varphi \right\| }^{2}} \right\} =0. \end{aligned} \end{aligned}$$
(A1)

Based on the first-order optimality condition, the worst-case drift function \({{\varphi }^{*}}(t)\) takes the form as

$$\begin{aligned} {{\varphi }^{*}}(t)=-\xi \left( y{{\Gamma }^{\top }}\hat{\pi }{{V}_{y}}+p{{\sigma }_{P}}{{V}_{p}}+{{\sigma }_{R}}{{V}_{r}} \right) . \end{aligned}$$
(A2)

Plugging Eq. (A2) into Eq. (A1), we have

$$\begin{aligned} \begin{aligned} \underset{\hat{\pi }\in \Pi }{\mathop {\sup }}\,&\left\{ {{V}_{t}} +y( {{{\hat{\pi }}}^{\top }}\Gamma \Lambda +r){{V}_{y}}+pk{{V}_{p}}+\left( a-br \right) {{V}_{r}}+\frac{1}{2}{{{\hat{\pi }}}^{\top }}\Sigma \hat{\pi }{{y}^{2}}{{\chi }_{yy}} \right. \\&+\frac{1}{2}{{p}^{2}}{{\left\| {{\sigma }_{P}} \right\| }^{2}}{{\chi }_{pp}}+\frac{1}{2}{{\left\| {{\sigma }_{R}} \right\| }^{2}}{{\chi }_{rr}}+{{{\hat{\pi }}}^{\top }}\Gamma {{\sigma }_{P}}yp{{\chi }_{yp}}+{{{\hat{\pi }}}^{\top }}\Gamma {{\sigma }_{R}}y{{\chi }_{yr}} \\&\left. +\sigma _{P}^{\top }{{\sigma }_{R}}p{{\chi }_{pr}} \right\} =0, \\ \end{aligned} \end{aligned}$$
(A3)

where

$$\begin{aligned}&{{\chi }_{yy}}={{V}_{yy}}-\xi V_{y}^{2}-\gamma g_{y}^{2}, \quad {{\chi }_{yp}}={{V}_{yp}}-\xi {{V}_{y}}{{V}_{p}}-\gamma {{g}_{y}}{{g}_{p}}, \quad {{\chi }_{yr}}={{V}_{yr}}-\xi {{V}_{y}}{{V}_{r}}-\gamma {{g}_{y}}{{g}_{r}}, \\&{{\chi }_{pp}}={{V}_{pp}}-\xi V_{p}^{2}-\gamma g_{p}^{2}, \quad {{\chi }_{rr}}={{V}_{rr}}-\xi V_{r}^{2}-\gamma g_{r}^{2}, \quad {{\chi }_{pr}}={{V}_{pr}}-\xi {{V}_{p}}{{V}_{r}}-\gamma {{g}_{p}}{{g}_{r}}. \end{aligned}$$

In the same manner, we could obtain the optimal control \({{\hat{\pi }}^{*}}(t)\) by using the first-order condition for \(\hat{\pi }(t)\) in Eq. (A3) as follows:

$$\begin{aligned} {{\hat{\pi }}^{*}}(t)=-\frac{1}{y{{\chi }_{yy}}}{{\Sigma }^{-1}}\Gamma \left( \Lambda {{V}_{y}}+p{{\chi }_{yp}}{{\sigma }_{P}}+{{\chi }_{yr}}{{\sigma }_{R}} \right) . \end{aligned}$$
(A4)

Substituting Eq. (A4) into Eq. (A3) implies

$$\begin{aligned} \begin{aligned} \underset{\hat{\pi }\in \Pi }{\mathop {\sup }}\,&\left\{ {{V}_{t}}+yr{{V}_{y}}+pk{{V}_{p}}+\left( a-br \right) {{V}_{r}}-{{\Lambda }^{\top }}\left( \frac{V_{y}^{2}}{2{{\chi }_{yy}}}\Lambda +\frac{p{{V}_{y}}{{\chi }_{yp}}}{{{\chi }_{yy}}}{{\sigma }_{P}}+\frac{{{V}_{y}}{{\chi }_{yr}}}{{{\chi }_{yy}}}{{\sigma }_{R}} \right) \right. \\&\text { }+\frac{1}{2}{{p}^{2}}{{\left\| {{\sigma }_{P}} \right\| }^{2}}\left( {{\chi }_{pp}}-\frac{\chi _{yp}^{2}}{{{\chi }_{yy}}} \right) +\frac{1}{2}{{\left\| {{\sigma }_{R}} \right\| }^{2}}\left( {{\chi }_{rr}}-\frac{\chi _{yr}^{2}}{{{\chi }_{yy}}} \right) \text { } \\&\text { }\left. +p\sigma _{P}^{\top }{{\sigma }_{R}}\left( {{\chi }_{pr}}-\frac{{{\chi }_{yp}}{{\chi }_{yr}}}{{{\chi }_{yy}}} \right) \right\} =0. \\ \end{aligned} \end{aligned}$$
(A5)

Next, the objective is to find the specific form of the value function, which is conjectured to be of the following form:

$$\begin{aligned} V\left( t,y,p,r \right) ={{n}_{1}}\left( t,r \right) \frac{y}{p}+{{n}_{2}}\left( t,r \right) , \end{aligned}$$
(A6)
$$\begin{aligned} g\left( t,y,p,r \right) ={{n}_{1}}\left( t,r \right) \frac{y}{p}+{{\bar{n}}_{2}}\left( t,r \right) , \end{aligned}$$
(A7)

with boundary conditions \({{n}_{1}}\left( T,r \right) =1\) and \({{n}_{2}}\left( T,r \right) ={{\bar{n}}_{2}}\left( T,r \right) =0\).

Remark 4

Based on the evidence gathered, we have sufficient reasons to suspect that the coefficient of the term \(\frac{y}{p}\) is identical in forms of two coupling functions \(V\left( t,y,p,r \right) \) and \(g\left( t,y,p,r \right) \). We have also assumed the situation where they are different and derived the solutions, the results confirmed that they are exactly identical. To simplify the derivation, we propose the conjecture for the value functions with the forms of Eqs. (A6) and (A7).

Substituting the derivatives of Eqs. (A6) and (A7) into Eq. (A5) and differentiating on \(\hat{\pi }(t)\), we get

$$\begin{aligned} {{{\hat{\pi }}}^{*}}(t)={{\left( {{\Gamma }^{\top }} \right) }^{-1}}&\left[ {{\sigma }_{P}} +\frac{p}{y{{n}_{1}}\left( \gamma +\xi \right) }\left( \Lambda -{{\sigma }_{P}} \right) +\frac{p{{n}_{1r}}}{yn_{1}^{2}\left( \gamma +\xi \right) }{{\sigma }_{R}} \right. \nonumber \\&\left. \text { }-\left( \frac{{{n}_{1r}}}{{{n}_{1}}}+\frac{p\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) }{y{{n}_{1}}\left( \gamma +\xi \right) } \right) {{\sigma }_{R}} \right] . \end{aligned}$$
(A8)

Then, inserting Eq. (A8) into Eqs. (37) and (38), and separating terms with respect to \(\frac{y}{p}\), we can derive that

$$\begin{aligned}&\begin{aligned} {{n}_{1t}}&+{{n}_{1}}\left( r-k+{{\Lambda }^{\top }}{{\sigma }_{P}} \right) +{{n}_{1r}}\left[ a-br-{{\left( \Lambda -{{\sigma }_{P}} \right) }^{\top }}{{\sigma }_{R}} \right] \\&+\left( \frac{{{n}_{1rr}}}{2}-\frac{n_{1r}^{2}}{{{n}_{1}}} \right) {{\left\| {{\sigma }_{R}} \right\| }^{2}}=0, \end{aligned} \end{aligned}$$
(A9)
$$\begin{aligned}&\begin{aligned} {{n}_{2t}}&+{{n}_{2r}}\left( a-br \right) +\frac{\gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}}}{\gamma +\xi }{{\left( \Lambda -{{\sigma }_{P}} \right) }^{\top }}{{\sigma }_{R}} \\&+\frac{1}{2\left( \gamma +\xi \right) }\left[ {{\left( \frac{{{n}_{1r}}}{{{n}_{1}}}-{{\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) }^{2}} \right) }^{2}}-\frac{\gamma \bar{n}_{2r}^{2}+\xi n_{2r}^{2}}{n_{1}^{2}} \right] {{\left\| {{\sigma }_{R}} \right\| }^{2}} \\&+\frac{{{n}_{1r}}}{{{n}_{1}}\left( \gamma +\xi \right) }\sigma _{P}^{\top }{{\sigma }_{R}}+\frac{1}{2\left( \gamma +\xi \right) }{{\left\| \Lambda - {{\sigma }_{P}} \right\| }^{2}}=0, \end{aligned} \end{aligned}$$
(A10)
$$\begin{aligned}&\begin{aligned} {{{\bar{n}}}_{2t}}&+{{{\bar{n}}}_{2r}}\left( a-br \right) +\frac{1}{2}\left( {{{\bar{n}}}_{2rr}}-{{n}_{2r}}{{{\bar{n}}}_{2r}} \right) {{\left\| {{\sigma }_{R}} \right\| }^{2}} +\frac{1}{\gamma +\xi }\left[ 1+\frac{\xi }{2\left( \gamma +\xi \right) } \right] {{\left\| \Lambda - {{\sigma }_{P}} \right\| }^{2}} \\&+\left[ \frac{2{{n}_{1r}}}{{{n}_{1}}}-\frac{\xi }{2}\left( {{{\bar{n}}}_{2r}}+{{n}_{2r}} \right) -\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) -\xi {{n}_{1}}{{n}_{1r}}+\frac{\xi \left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) }{\gamma +\xi } \right] \\&\times \frac{1}{\gamma +\xi }{{\left( \Lambda -{{\sigma }_{P}} \right) }^{\top }}{{\sigma }_{R}}+\left[ 2{{n}_{1r}}+\xi {{n}_{1}}\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) \left( {{{\bar{n}}}_{2r}}+{{n}_{2r}} \right) \right. \\&\left. -2{{n}_{1r}}\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) -\xi {{n}_{1r}}\left( {{{\bar{n}}}_{2r}}+{{n}_{2r}} \right) \right] \times \frac{1}{2{{n}_{1}}\left( \gamma +\xi \right) } {{\left\| {{\sigma }_{R}} \right\| }^{2}} \\&+\frac{1}{2{{\left( \gamma +\xi \right) }^{2}}}{{\left[ \frac{{{n}_{1r}}}{{{n}_{1}}}-\left( \gamma {{{\bar{n}}}_{2r}}+\xi {{n}_{2r}} \right) \right] }^{2}}{{\left\| {{\sigma }_{R}} \right\| }^{2}}=0. \end{aligned} \end{aligned}$$
(A11)

To solve Eqs. (A9)–(A11), we further assume that

$$\begin{aligned} {{n}_{1}}={{e}^{{{q}_{1}}(t)r+{{q}_{2}}(t)}}, ~{{n}_{2}}={{q}_{3}}(t)r+{{q}_{4}}(t), ~{{{\bar{n}}}_{2}}={{{\bar{q}}}_{3}}(t)r+{{{\bar{q}}}_{4}}(t), \end{aligned}$$
(A12)

where \({{q}_{1}}(T)={{q}_{2}}(T)={{q}_{3}}(T)={{q}_{4}}(T)={{\bar{q}}_{3}}(T)={{\bar{q}}_{4}}(T)=0\).

Inserting Eq. (A12) into Eqs. (A9)–(A11) and separating the variables, we have

$$\begin{aligned}&{{q}_{1t}}-\frac{1}{2}\sigma _{r}^{2}q_{1}^{2}-\left[ b-\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}} \right] {{q}_{1}}+{{\lambda }_{r}}{{\sigma }_{P1}}+1=0, \end{aligned}$$
(A13)
$$\begin{aligned}&{{q}_{2t}}+a{{q}_{1}}+k-\left( {{\lambda }_{S}}{{\sigma }_{P2}}+{{\lambda }_{P}}{{\sigma }_{P3}} \right) =0, \end{aligned}$$
(A14)
$$\begin{aligned}&\begin{aligned} {{q}_{3t}}&-\left[ b+\frac{\xi }{\gamma +\xi }\left( {{\sigma }_{r}}\left( {{\lambda }_{r}}+{{\sigma }_{P1}} \right) +\frac{1}{2}\sigma _{r}^{2} \right) \right] {{q}_{3}}-\frac{1}{2}\sigma _{r}^{2}\xi q_{3}^{2} \\&-\frac{\gamma }{\gamma +\xi }\left[ {{\sigma }_{r}}\left( {{\lambda }_{r}}+{{\sigma }_{P1}} \right) +\frac{1}{2}\sigma _{r}^{2} \right] {{{\bar{q}}}_{3}}-\frac{1}{2}\sigma _{r}^{2}\gamma \bar{q}_{3}^{2} \\&+\frac{1}{\gamma +\xi }\left[ \left( {{\sigma }_{P1}}+\frac{1}{2}{{\sigma }_{r}} \right) {{\sigma }_{r}}{{q}_{1}}+\frac{1}{2}{{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) }^{2}} \right] =0, \\ \end{aligned} \end{aligned}$$
(A15)
$$\begin{aligned}&\begin{aligned} {{{\bar{q}}}_{3t}}&+\left[ \frac{\gamma \xi \sigma _{r}^{2}{{q}_{1}}}{{{\left( \gamma +\xi \right) }^{2}}}-b+\frac{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}}}{\gamma +\xi }\left( \frac{{{\gamma }^{2}}}{\gamma +\xi }+\frac{\xi }{2} \right) -\frac{\sigma _{r}^{2}{{q}_{1}}}{\gamma +\xi }\left( \gamma +\frac{\xi }{2} \right) \right] {{{\bar{q}}}_{3}} \\&+\left[ \frac{{{\xi }^{2}}\sigma _{r}^{2}{{q}_{1}}}{{{\left( \gamma +\xi \right) }^{2}}}+\frac{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}}}{\gamma +\xi }\left( \frac{\gamma \xi }{\gamma +\xi }+\frac{\xi }{2} \right) -\frac{3\xi \sigma _{r}^{2}{{q}_{1}}}{2\left( \gamma +\xi \right) } \right] {{q}_{3}} \\&+\frac{\gamma \xi \sigma _{r}^{2}}{2\left( \gamma +\xi \right) }\left( 1-\frac{1}{\gamma +\xi } \right) \bar{q}_{3}^{2}-\frac{\gamma {{\xi }^{2}}\sigma _{r}^{2}}{{{\left( \gamma +\xi \right) }^{2}}}{{q}_{3}}{{{\bar{q}}}_{3}}+\frac{\gamma {{\xi }^{2}}\sigma _{r}^{2}}{2{{\left( \gamma +\xi \right) }^{2}}}q_{3}^{2} \\&-\frac{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}}{{q}_{1}}}{\gamma +\xi }\left( 2+\frac{\xi }{\gamma +\xi } \right) +\frac{\sigma _{r}^{2}q_{1}^{2}}{\gamma +\xi } \\&+\frac{2-\xi }{2\left( \gamma +\xi \right) }{{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) }^{2}}-\frac{\xi \sigma _{r}^{2}q_{1}^{2}}{2{{\left( \gamma +\xi \right) }^{2}}}=0, \\ \end{aligned} \end{aligned}$$
(A16)
$$\begin{aligned}&{{q}_{4t}}+a{{q}_{3}}+\frac{1}{2\left( \gamma +\xi \right) }\left[ {{\left( {{\lambda }_{S}}-{{\sigma }_{P2}} \right) }^{2}}+{{\left( {{\lambda }_{P}}-{{\sigma }_{P3}} \right) }^{2}} \right] =0, \end{aligned}$$
(A17)
$$\begin{aligned}&{{\bar{q}}_{4t}}+a{{\bar{q}}_{3}}+\frac{2-\xi }{2\left( \gamma +\xi \right) }\left[ {{\left( {{\lambda }_{S}}-{{\sigma }_{P2}} \right) }^{2}}+{{\left( {{\lambda }_{P}}-{{\sigma }_{P3}} \right) }^{2}} \right] =0. \end{aligned}$$
(A18)

Considering the boundary conditions, the solutions are given by

$$\begin{aligned}&{{q}_{1}}(t)=\frac{{{\eta }_{1}}{{\eta }_{2}}\left( 1-{{e}^{\sqrt{{{\Delta }_{{{q}_{1}}}}}\left( T-t \right) }} \right) }{{{\eta }_{1}}-{{\eta }_{2}}{{e}^{\sqrt{{{\Delta }_{{{q}_{1}}}}}\left( T-t \right) }}},\\&{{q}_{2}}(t)=-\int _{t}^{T}{a{{q}_{1}}(s)\textrm{d}s}+\left( k- {{\lambda }_{S}}{{\sigma }_{P2}}-{{\lambda }_{P}}{{\sigma }_{P3}} \right) \left( T-t \right) ,\\&{{q}_{4}}(t)=-\int _{t}^{T}{a{{q}_{3}}(s)\textrm{d}s}+\frac{1}{2\left( \gamma +\xi \right) }\left[ {{\left( {{\lambda }_{S}}-{{\sigma }_{P2}} \right) }^{2}}+{{\left( {{\lambda }_{P}}-{{\sigma }_{P3}} \right) }^{2}} \right] \left( T-t \right) ,\\&{{\bar{q}}_{4}}(t)=-\int _{t}^{T}{a{{{\bar{q}}}_{3}}(s)\textrm{d}s}+\frac{2-\xi }{2\left( \gamma +\xi \right) }\left[ {{\left( {{\lambda }_{S}}-{{\sigma }_{P2}} \right) }^{2}}+{{\left( {{\lambda }_{P}}-{{\sigma }_{P3}} \right) }^{2}} \right] \left( T-t \right) , \end{aligned}$$

where

$$\begin{aligned} {{\Delta }_{{{q}_{1}}}}=&{{\left[ \left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}}-b \right] }^{2}}+2\sigma _{r}^{2}\left( {{\lambda }_{r}}{{\sigma }_{P1}}+1 \right) >0, \\&{{\eta }_{1,2}}=\frac{\left( {{\lambda }_{r}}-{{\sigma }_{P1}} \right) {{\sigma }_{r}}-b\pm \sqrt{{{\Delta }_{{{q}_{1}}}}}}{\sigma _{r}^{2}}. \end{aligned}$$

Moreover, \({{q}_{3}}(t)\) and \({{\bar{q}}_{3}}(t)\) are commonly determined by Eqs. (A15) and (A16). According to the Theorem on page 65 and the Lemma on the Extension of Solutions on page 67 in Walter (1998), the solutions for \({{q}_{3}}(t)\) and \({{\bar{q}}_{3}}(t)\) are existent and unique. Substituting Eqs. (A6), (A7) and (A12) into Eqs. (A4) and (A2), Eqs. (40) and (41) can be obtained, sequentially. Therefore, the proof of Theorem 3.6 is accomplished. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Chang, H. Robust time-consistent strategy for the defined contribution pension plan with a minimum guarantee under ambiguity. Comp. Appl. Math. 42, 335 (2023). https://doi.org/10.1007/s40314-023-02482-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02482-9

Keywords

Mathematics Subject Classification

Navigation