Skip to main content
Log in

A Krasnosel’skii–Zincenko-type method in \(K\!\)-normed spaces for solving equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a new semilocal convergence result for a Krasnosel’skii–Zincenko-type method (KZTM) to solve a nonlinear operator equation in a \(K\!\)-normed space setting. Using our new idea of restricted convergence domains, we show how to expand the convergence domain of KZTM under the same computational cost as in earlier studies. Numerical examples show how to solve an equation in cases not possible before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amat S, Busquier S, Plaza S (2005) Dynamics of the King and Jarratt iterations. aequationes mathematicae 69:212–223

  • Amat S, Busquier S, Plaza S (2010) Chaotic dynamics of a third-order Newton-type methods. J Math Anal Appl 1(366):24–32

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK (1993) Newton-like methods in generalized Banach spaces. Funct Approx Comment Math 22:13–20

    MathSciNet  MATH  Google Scholar 

  • Argyros IK (1997) On a new Newton-Mysovskii-type theorem with applications to inexact-Newton-like methods and their discretizations. IMA J Numer Anal 18:37–56

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK (2004a) A convergence analysis and applications for the Newton-Kantorovich method in \(K\)-normed spaces. Rend Circ Mat Palermo 53(2):251–271

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK (2004b) A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J Math Anal Appl 298:374–397

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK (2008) Convergence and applications of Newton-type iterations. Springer, New York

    MATH  Google Scholar 

  • Argyros IK, Hilout S (2012) Weaker conditions for the convergence of Newton’s method. J Complex 28:364–387

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK, Szidarovszky F (1993) The theory and applications of iteration methods. Press, Boca Raton, C.R.C

    MATH  Google Scholar 

  • Caponetti D, DePascale E, Zabrejko PP (2000) On the Newton-Kantorovich method in \(K\)-normed spaces. Rendiconti del circolo matematico di Palermo Tome XLIX Ser II:545–560

    Article  MathSciNet  Google Scholar 

  • Catinas E (1994) On some iterative methods for solving nonlinear equations. Rev Anal Numer Theor Approx 23:47–53

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ezquerro JA, Hernández MA (2002) Generalized differentiability conditions for Newton’s method. IMA J Numer Anal 22:187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Gutierrez JM, Hernández MA, Salanora MA (1995) Accessibility of solutions by Newton’s method. Int J Comput Math 57:239–247

    Article  MATH  Google Scholar 

  • Kantorovich LV, Akilov GP (1982) Functional analysis. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Krasnosel’skii MA, Vainikko GM, Zabreyko RP, Ruticki YB, Stet’senko VV (1969) Approximate solution of operator equations. Wolters-Noordhoff Publisher, Groningen

    Google Scholar 

  • Magreñán ÁA (2014) Different anomalies in a Jarratt family of iterative root-finding methods. Appl Math Comput 333:29–38

    MathSciNet  MATH  Google Scholar 

  • Magreñán ÁA (2014) A new tool to study real dynamics: the convergence plane. Appl Math Comput 248:215–224

    MathSciNet  MATH  Google Scholar 

  • Meyer PW (1992) A unifying theorem on Newton’s method. Numer Funct Anal Optim 13:463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Pandian MC (1985) A convergence test and componentwise error estimates for Newton type methods. SIAM J Numer Anal 22:779–791

    Article  MathSciNet  MATH  Google Scholar 

  • Potra FA, Ptak V (1989) Nondiscrete induction and iterative processes. Research notes in mathematics, vol 103. Pitman, Advanced Publishing Program, Boston

  • Proinov PD (2010) New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J Complex 26:3–42

    Article  MathSciNet  MATH  Google Scholar 

  • Vandergraft JS (1967) Newton’s method for convex operators in partially ordered spaces. SIAM J Numer Anal 4:406–432

    Article  MathSciNet  MATH  Google Scholar 

  • Zabrejko PP (1997) \(K\)-metric and \(K\)-normed linear spaces: a survey. Collect Math 48:825–859

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson N. Silva.

Additional information

Communicated by Armin Iske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Silva, G.N. A Krasnosel’skii–Zincenko-type method in \(K\!\)-normed spaces for solving equations. Comp. Appl. Math. 37, 2399–2412 (2018). https://doi.org/10.1007/s40314-017-0456-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0456-7

Keywords

Mathematics Subject Classification

Navigation