Skip to main content
Log in

A Framework for the Parameterization of Robust Stabilizing \(\mathcal {H}_\infty \) Controllers Applied in Trajectory Tracking of Non-holonomic Robots

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the characterization of all stabilizing \(\mathcal {H}_{\infty }\) controllers for plants described by any left coprime factors under an alternative framework, which is defined for both the continuous- and discrete-time cases. Moreover, we show that this framework can generate both continuous-time (strictly proper) and discrete-time (non-strictly proper) central controllers. In particular, the application will be carried out to track the trajectory of two-wheel non-holonomic mobile robots with differential drive used in robot soccer competitions in the Very Small Size (VSS) category. For simulation purposes, the structures of the discrete-time central controller and the continuous-time central controller applied to the same model of the robot under study will be presented. In addition, controller implementations will be presented, which will validate the effectiveness of the designed control systems against the references imposed on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Mayyahi, A., Wang, W., & Birch, P. (2016). Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle. Journal of Control, Automation and Electrical Systems, 27(1), 29–42.

    Article  Google Scholar 

  • Başar, T., & Bernhard, P. (1995). \(\cal{H} _{\infty }\)-Optimal control and related minimax design problems. Birkäuser.

  • Campion, G., d’Andrea Novel, B., & Bastin, G. (1991) Modelling and state feedback control of nonholonomic mechanical systems. In Proceedings of the IEEE Conference on Decision and Control (pp. 1184–1189). IEEE.

  • Coimbra, F., & Maximo, M. (2023). Team modeling with deep behavioral cloning for the RoboCup 2D soccer simulation league. IEEE Latin America Transactions, 21(2), 288–294.

    Article  Google Scholar 

  • Doyle, J., Glover, K., Khargonekar, P., & Francis, B. A. (1989). State-space solutions to standard \(\cal{H} _2\) and \(\cal{H} _{\infty }\) control problems. IEEE Transactions on Automatic Control, 34(8), 831–847.

    Article  MathSciNet  Google Scholar 

  • Fabregas, E., Farias, G., Aranda-Escolástico, E., Garcia, G., Chaos, D., Dormido-Canto, S., & Bencomo, S. D. (2019). Simulation and experimental results of a new control strategy for point stabilization of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, 67(8), 6679–6687.

    Article  Google Scholar 

  • Fierro, R., & Lewis, F. (1997). Robust practical point stabilization of a nonholonomic mobile robot using neural networks. Journal of Intelligent and Robotic Systems, 20, 295–317.

    Article  Google Scholar 

  • Hu, J., Wang, Y., Fujimoto, H., & Hori, Y. (2017). Robust yaw stability control for in-wheel motor electric vehicles. IEEE/ASME Transactions on Mechatronics, 22(3), 1360–1370.

    Article  Google Scholar 

  • Iglesias, P. (2000). The strictly proper discrete-time controller for the normalized left-coprime factorization robust stabilization problem. IEEE Transactions on Automatic Control, 45(3), 516–520.

    Article  MathSciNet  Google Scholar 

  • Iglesias, P. A., & Glover, K. (1991). State-space approach to discrete-time, \(\cal{H} _\infty \) control. International Journal of Control, 54(5), 1031–1073.

    Article  MathSciNet  Google Scholar 

  • Khatibi, H., & Karimi, A. (2010). \(\cal{H} _\infty \) controller design using an alternative to Youla parameterization. IEEE Transactions on Automatic Control, 55(9), 2119–2123.

    Article  MathSciNet  Google Scholar 

  • Kučera, V. (2011). A method to teach the parameterization of all stabilizing controllers. In 8th IFAC Worshop on Control Applications of Optimization (vol. 44(1), pp. 6355–6360).

  • Lee, J., Lin, C., Lim, H., & Lee, J. M. (2009). Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space. International Journal of Control, Automation and Systems, 7, 429–435.

    Article  Google Scholar 

  • Mary, A. (2010) Robust stabilization of a non-holonomic system via \(\cal{H}_\infty \) control. In Proceedings of the IEEE international conference on emerging trends in robotics and communication technologies (pp. 164–168). IEEE

  • McFarlane, D., & Glover, K. (1990). Robust controller design using normalized coprime factor plant descriptions. Springer-Verlag.

  • Mirkin, L. (1997). On discrete-time \(\cal{H} _{\infty }\) problem with a strictly proper controller. International Journal of Control, 66(5), 747–766.

    Article  MathSciNet  Google Scholar 

  • Okuyama, I., Maximo, M., & Afonso, R. (2021). Minimum-time trajectory planning for a differential drive mobile robot considering non-slipping constraints. Journal of Control, Automation and Electrical Systems, 32(1), 120–131.

    Article  Google Scholar 

  • Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835–852.

    Article  Google Scholar 

  • Rabbani, M., & Memon, A. (2021). Trajectory tracking and stabilization of nonholonomic wheeled mobile robot using recursive integral backstepping control. Electronics, 10(16), 1992.

    Article  Google Scholar 

  • Reyhanoglu, M. (1992). Control and stabilization of nonholonomic dynamic systems. University of Michigan.

  • Rosa, L., Pereira, R., & de Oliveira, M. (2022). Coprime factorizations of discrete-time LPV/LFR systems. Journal of Control, Automation and Electrical Systems, 33(3), 755–766.

    Article  Google Scholar 

  • Roy, S., Nandy, S., Ray, R., & Shome, S. N. (2015). Robust path tracking control of nonholonomic wheeled mobile robot: Experimental validation. International Journal of Control, Automation and Systems, 13(4), 897–905.

    Article  Google Scholar 

  • Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control: analysis and design. John Wiley & Sons.

  • Stoorvogel, A. (1992). The\(\cal{H} _{\infty }\)control problem: A state space approach. Prentice Hall.

  • Sun, W., Tang, S., Gao, H., & Zhao, J. (2016). Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Transactions on Control Systems Technology, 24(6), 2059–2069.

    Article  Google Scholar 

  • Sung, Y., Patil, S., & Safonov, M. (2016). Data-driven loop-shaping controller design. International Journal of Robust and Nonlinear Control, 28(12), 3678–3693.

    Article  MathSciNet  Google Scholar 

  • Tanner, H., & Kyriakopoulos, K. (2002). Discontinuous backstepping for stabilization of nonholonomic mobile robots. In Proceedings of the IEEE international conference on robotics and automation (pp. 3948–3953). IEEE

  • Tudor, S., & Oară, C. (2018). Robust stabilization of discrete generalized systems. Automatica, 94, 334–340.

    Article  MathSciNet  Google Scholar 

  • Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L., & Wang, T. (2016). Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Transactions on Industrial Electronics, 64(1), 505–516.

    Article  Google Scholar 

  • Yang, J., & Kim, J. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 15(3), 578–587.

    Article  Google Scholar 

  • Yang, J., & Kim, J. (1999). Sliding mode motion control of nonholonomic mobile robots. IEEE Control Systems Magazine, 19(2), 15–23.

    Article  Google Scholar 

  • Yang, J., & Kim, J. (1999). Sliding mode motion control of nonholonomic mobile robots. IEEE Control Systems Magazine, 19(2), 15–23.

    Article  Google Scholar 

  • Zames, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2), 301–320.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Zhao, X., Tao, B., & Ding, H. (2020). Point stabilization of nonholonomic mobile robot by Bézier smooth subline constraint nonlinear model predictive control. IEEE/ASME Transactions on Mechatronics, 26(2), 990–1001.

    Article  Google Scholar 

  • Zhou, K., & Doyle, J. (1998). Essentials of Robust Control. Prentice-Hall.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz F. Pugliese.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugliese, L.F., Santos, K.O., de Oliveira, T.G. et al. A Framework for the Parameterization of Robust Stabilizing \(\mathcal {H}_\infty \) Controllers Applied in Trajectory Tracking of Non-holonomic Robots. J Control Autom Electr Syst 35, 301–313 (2024). https://doi.org/10.1007/s40313-024-01078-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-024-01078-w

Keywords

Navigation