Skip to main content
Log in

Vulnerability and Recovery Capacity Assessment of Real Distribution Systems

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Modern society heavily depends on electricity for vital services, delivered to final users by Distribution Systems (DSs). Since DSs are exposed to permanent faults that can cause the non-supply of electricity to large areas, increases in their resilience have been a growing concern of researchers, public agents, and society. This paper proposes a methodology for analyses of two important metrics for resilience assessment, namely vulnerability and recovery capacity of real DSs for permanent faults (single and multiple faults). The methodology quantifies the single and multiple faults’ probability of occurrence for estimating the DS vulnerability and the system’s capacity to deal with the impacts of permanent faults through the Service Restoration (SR) process. It comprises a statistical analysis for finding the faults probabilities and a multi-objective evolutionary algorithm for solving the SR problem for large-scale DSs. The results from its application to a real large-scale Brazilian DS, composed of 49,938 buses, 4771 switches, 9 substations, and 95 feeders are provided. The study shares valuable utility experience towards new insights and on challenges faced in the real-time operation of a Brazilian DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A sector is a grouping of electric conductors, load or passage buses interconnected by maneuvre or protection switches.

  2. A tree is a connected and acyclic graph.

  3. According to the Electricity Distribution Procedure of ANEEL (National Electric Energy Agency), quality and continuity indicators are evaluated only for long term breaks defined as interruptions lasting longer than 3 min.

References

  • Bessani, M., Fanucchi, RZ., Achcar, JA., & Maciel, CD. (2016a). Statistical analysis and modeling of repair data from a Brazilian power distribution system. In: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), IEEE

  • Bessani, M., Fanucchi, R. Z., Delbem, A. C., & Maciel, C. D. (2016). Impact of operators’ performance on the reliability of cyber-physical power distribution systems. IET Generation, Transmission and Distribution, 10(11), 2640–2646.

    Article  Google Scholar 

  • Bessani, M., Massignan, J. A., Fanucchi, R. Z., Camillo, M. H., London, J. B., Delbem, A. C., & Maciel, C. D. (2019). Probabilistic assessment of power distribution systems resilience under extreme weather. IEEE Systems Journal, 13(2), 1747–1756.

    Article  Google Scholar 

  • Billinton, R., & Li, W. (1994). Reliability assessment of electric power systems using Monte Carlo methods. Springer Science Business Media.

    Book  MATH  Google Scholar 

  • Bollen, MH. (2000). Effects of adverse weather and aging on power system reliability. In: 2000 IEEE Industrial and Commercial Power Systems Technical Conference. Conference Record (Cat. No. 00CH37053), IEEE, pp. 63–68

  • Burillo, D., Chester, M. V., Pincetl, S., & Fournier, E. (2019). Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in los angeles county. Energy Policy, 128, 943–953.

    Article  Google Scholar 

  • Camillo, M. H., Fanucchi, R. Z., Romero, M. E., de Lima, T. W., Soares, Ad. S., Delbem, A., Marques, L. T., Maciel, C. D., & London, J. (2016). Combining exhaustive search and multi-objective evolutionary algorithm for service restoration in large-scale distribution systems. Electric Power Systems Research, 134, 1–8.

    Article  Google Scholar 

  • Camillo, M.H.M., Fanucchi, R.Z., Romero, M.E.V., de Lima, T.W., Marques, L.T., Massignan, J.A.D., Maciel, C.D., Soares, A.S., Delbem, A.B.C., Bessani, M., & London, JBA. (2016b). Determination of switching sequence of service restoration in distribution systems: Application and analysis on a real and large-scale radial system. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T &D), pp. 1–5, https://doi.org/10.1109/TDC.2016.7520034

  • Celli, G., Ghiani, E., Pilo, F., & Soma, G. G. (2013). Reliability assessment in smart distribution networks. Electric Power Systems Research, 104, 164–175.

    Article  Google Scholar 

  • Chi, Y., Xu, Y., & Ding, T. (2019). Coordinated var planning for voltage stability enhancement of a wind-energy power system considering multiple resilience indices. IEEE Transactions on Sustainable Energy, 11, 2367–2379.

    Article  Google Scholar 

  • Chowdhury, A., & Koval, D. (2011). Power distribution system reliability: practical methods and applications (Vol. 48). Wiley.

    Google Scholar 

  • Das, D. (2006). Reconfiguration of distribution system using fuzzy multi-objective approach. International Journal of Electrical Power and Energy Systems, 28(5), 331–338.

    Article  Google Scholar 

  • Espinoza, S., Poulos, A., Rudnick, H., de la Llera, J. C., Panteli, M., & Mancarella, P. (2020). Risk and resilience assessment with component criticality ranking of electric power systems subject to earthquakes. IEEE Systems Journal, 14, 2837–2848.

    Article  Google Scholar 

  • Fanucchi, R.Z., Bessani, M., Maciel, C.D., London Jr, J.B., & Camillo, M.H. (2016). Failure rate prediction under adverse weather conditions in an electric distribution system using negative binomial regression. In: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), IEEE

  • Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A survey on power system blackout and cascading events: Research motivations and challenges. Energies, 12(4), 682.

    Article  Google Scholar 

  • Home-Ortiz, J. M., Melgar-Dominguez, O. D., Javadi, M. S., Mantovani, J. R. S., & Catalão, J. P. S. (2022). Improvement of the distribution systems resilience via operational resources and demand response. IEEE Transactions on Industry Applications, 58(5), 5966–5976. https://doi.org/10.1109/TIA.2022.3190241

    Article  Google Scholar 

  • Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis: Regression modeling of time to event data (2nd ed.). Wiley.

    Book  MATH  Google Scholar 

  • Kang, D.J., Kim, H.T., & Choi, S. (2019). Methodology for quantifying the economic impact of cyberattacks on bulk electric systems. In: 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I &CPS), IEEE, pp. 1–5.

  • Kavousi-Fard, A., & Niknam, T. (2014). Optimal distribution feeder reconfiguration for reliability improvement considering uncertainty. IEEE Transactions on Power Delivery, 29(3), 1344–1353.

    Article  Google Scholar 

  • Li, Z., Xu, Y., Wang, P., & Xiao, G. (2023). Coordinated preparation and recovery of a post-disaster multi-energy distribution system considering thermal inertia and diverse uncertainties. Applied Energy, 336, 120736. https://doi.org/10.1016/j.apenergy.2023.120736, www.sciencedirect.com/science/article/pii/S0306261923001009

  • Liu, J., Qin, C., & Yu, Y. (2020). A comprehensive resilience-oriented FLISR method for distribution systems. IEEE Transactions on Smart Grid, 12, 2136–2152.

    Article  Google Scholar 

  • Macedo, L. H., Muñoz-Delgado, G., Contreras, J., & Romero, R. (2021). Optimal service restoration in active distribution networks considering microgrid formation and voltage control devices. IEEE Transactions on Industry Applications, 57(6), 5758–5771. https://doi.org/10.1109/TIA.2021.3116559

    Article  Google Scholar 

  • Mahzarnia, M., Moghaddam, M. P., Baboli, P. T., & Siano, P. (2020). A review of the measures to enhance power systems resilience. IEEE Systems Journal, 14(3), 4059–4070.

    Article  Google Scholar 

  • Marques, L. T., Delbem, A. C. B., & London, J. B. A. (2017). Service restoration with prioritization of customers and switches and determination of switching sequence. IEEE Transactions on Smart Grid, 9(3), 2359–2370.

    Google Scholar 

  • Martins, G.F.A. (2019). Processo automático de restabelecimento de energia em sistemas de distribuição modelado através de sistemas multiagentes. Master’s thesis, Universidade Estadual do Oeste do Paraná.

  • Panchalogaranjan, V., Moses, P., & Shumaker, N. (2023). Case study of a severe ice storm impacting distribution networks in Oklahoma. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2023.3252592

    Article  Google Scholar 

  • Peralta, R. A. V., Leite, J. B., & Mantovani, J. R. S. (2019). Automatic restoration of large-scale distribution networks with distributed generators, voltage control devices and heating loads. Electric Power Systems Research, 176, 105925.

    Article  Google Scholar 

  • Ravaglio, M. A., Küster, K. K., Santos, S. L. F., Toledo, L. F. R. B., Piantini, A., Lazzaretti, A. E., de Mello, L. G., & da Silva Pinto, C. L. (2019). Evaluation of lightning-related faults that lead to distribution network outages: An experimental case study. Electric Power Systems Research, 174, 105848.

    Article  Google Scholar 

  • Roos, F., & Lindahl, S. (2004). Distribution system component failure rates and repair times–an overview. In: Nordic distribution and asset management conference, Citeseer, pp. 23–24.

  • Sanches, D. S., Junior, J. B. A. L., & Delbem, A. C. B. (2014). Multi-objective evolutionary algorithm for single and multiple fault service restoration in large-scale distribution systems. Electric Power Systems Research, 110, 144–153.

    Article  Google Scholar 

  • Schneider, K. P., Tuffner, F. K., Elizondo, M. A., Liu, C. C., Xu, Y., & Ton, D. (2017). Evaluating the feasibility to use microgrids as a resiliency resource. IEEE Transactions on Smart Grid, 8(2), 687–696.

    Google Scholar 

  • Shao, C., Shahidehpour, M., Wang, X., Wang, X., & Wang, B. (2017). Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience. IEEE Transactions on Power Systems, 32(6), 4418–4429.

    Article  Google Scholar 

  • Shivaie, M., Kiani-Moghaddam, M., & Weinsier, P. D. (2020). Resilience-based tri-level framework for simultaneous transmission and substation expansion planning considering extreme weather-related events. IET Generation, Transmission and Distribution, 14(16), 3310–3321.

    Article  Google Scholar 

  • Stankovic, A., Tomsovic, K. (2018). Comments on the definition and quantification of resilience. IEEE Task Force on Definition and Quantification of Resilience, 1–3.

  • Teng, J. H. (2009). Unsymmetrical short-circuit fault analysis for weakly meshed distribution systems. IEEE Transactions on Power Systems, 25(1), 96–105.

    Article  Google Scholar 

  • Teoh, Y. E., Alipour, A., & Cancelli, A. (2019). Probabilistic performance assessment of power distribution infrastructure under wind events. Engineering Structures, 197, 109199.

  • Ton, D. T., & Wang, W. P. (2015). A more resilient grid: The us department of energy joins with stakeholders in an r and d plan. IEEE Power and Energy Magazine, 13(3), 26–34.

    Article  Google Scholar 

  • Wang, Y., Su, X., Song, M., Jiang, W., Shahidehpour, M., & Xu, Q. (2023). Sequential load restoration with soft open points and time-dependent cold load pickup for resilient distribution systems. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2023.3262199

  • Xu, Y., Liu, C. C., Schneider, K. P., Tuffner, F. K., & Ton, D. T. (2018). Microgrids for service restoration to critical load in a resilient distribution system. IEEE Transactions on Smart Grid, 9(1), 426–437.

    Article  Google Scholar 

  • Zapata, C., Silva, S., & Burbano, O. (2008). Repair models of power distribution components. In: 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, IEEE, pp. 1–6.

  • Zidan, A., Khairalla, M., Abdrabou, A. M., Khalifa, T., Shaban, K., Abdrabou, A., El Shatshat, R., & Gaouda, A. M. (2017). Fault detection, isolation, and service restoration in distribution systems: State-of-the-art and future trends. IEEE Transactions on Smart Grid, 8(5), 2170–2185.

    Article  Google Scholar 

  • Zio, E. (2013). The Monte Carlo simulation method for system reliability and risk analysis. Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Bosco A. London Junior.

Ethics declarations

Conflicts of interest

All authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant 314439/2021-8, Companhia Paranaense de Energia-(COPEL) S/A under Grant PD2866-0504/2018, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and Fundação de Amparoà Pesquisa de Minas Gerais (FAPEMIG).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camillo, M.H.M., Fanucchi, R.Z., Bessani, M. et al. Vulnerability and Recovery Capacity Assessment of Real Distribution Systems. J Control Autom Electr Syst 34, 1054–1069 (2023). https://doi.org/10.1007/s40313-023-01013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01013-5

Keywords

Navigation