Skip to main content

Advertisement

Log in

Speed Control of a Separately Excited DC Motor Using New Proposed Fuzzy Neural Algorithm Based on FOPID Controller

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The main goal of this paper is to control the speed of a separately excited DC motor (SEDM) with a new proposed fuzzy neural (FN) controller. This proposed method is used to adjust the fractional order proportional integral derivative (FOPID) parameters of the controller. Also the proposed control diagram solves the problem of parameter setting of the FN controller more effectively with use of particle swarm optimization (PSO) algorithm. In simulation with MATLAB 2017b, 250 series of data were used: 175 series of data, equivalent to 70% for training the designed neural network, and about 75 series, equivalent to 30% used to test and validate the neural network. The results show that the proposed method has a lower rise time and settling time for controlling the speed of SEDM in comparison with other methods such as Ziegler–Nichols, Cohen–Coon, PSO, genetic algorithm, artificial bee colony, artificial neural network, fuzzy logic controller and adaptive neuro-fuzzy interference system for PID and FOPID controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abed, W. N. A. (2015). Speed control of DC motor using adaptive neuro fuzzy controller. Journal of Scientific and Engineering Research, 2(1), 16–21.

    Google Scholar 

  • Adam Mohammed, O. O., & Taifor Ali, A. (2014). Comparative study of PID and fuzzy controllers for speed control of DC motor. International Journal of Innovative Research in Science, Engineering and Technology, 3(9), 16104–16110.

    Article  Google Scholar 

  • Adewuyi, P. A. (2013). DC motor speed control: A case between PID controller and fuzzy logic controller. International Journal of Multidisciplinary Sciences and Engineering, 4(4), 36–40.

    Google Scholar 

  • Aggrawal, A., Mishra, A. K., & Zeeshan, A. (2014). Speed control of DC motor using particle swarm optimization technique by PSO tunned PID and FOPID. International Journal of Engineering Trends and Technology (IJETT), 16(2), 72–79.

    Article  Google Scholar 

  • Akbari-Hasanjani, R., Javadi, S., & Sabbaghi-Nadooshan, R. (2014). DC motor speed control by self-tuning fuzzy PID algorithm. Transactions of the Institute of Measurement and Control, 37(2), 164–176.

    Article  Google Scholar 

  • Alhanjouri, M. A. (2017). Speed control of DC motor using artificial neural network. International Journal of Science and Research (IJSR), 7(3), 2140–2148.

    Google Scholar 

  • Anguluri, R., Das, S., & Abraham, A. (2013). Fractional order PID controller design for speed control of chopper fed DC motor drive using artificial bee colony algorithm. In: Proceeding of IEEE world congress on nature and biologically inspired computing (NaBIC) (pp. 259–266), Fargo, North Dakota, USA, 12–14 Aug.

  • Awouda, A. E. A., & Mergani, M. H. (2017). Design of self tuning PID controller using fuzzy logic for DC motor speed. International Journal of Social Science and Technology, 2(4), 27–33.

    Google Scholar 

  • Bansal, U. K., & Narvey, R. (2013). Speed control of DC motor using fuzzy PID controller. Advance in Electronic and Electric Engineering, 3(9), 1209–1220.

    Google Scholar 

  • Baruch, I. S., Garrido, R., Flores, J. M., & Martinez, J.-C. (2001). An adaptive neural control of a DC motor. In: Proceeding of IEEE International symposium on intelligent control (pp. 121–126), Mexico City, Mexico, 5–7 Sept.

  • Carpinteri, A., & Mainardi, F. (1997). Fractals and fractional calculus in continuum mechanics (pp. 223–276). Wien: Springer.

    Book  MATH  Google Scholar 

  • Chaudhary, H., Khatoon, S., & Singh, R. (2016). ANFIS based speed control of DC motor. In Proceeding second international innovative applications of computational intelligence on power, energy and controls with their impact on humanity (CIPECH) (pp. 63–67), Ghaziabad, India, 18–19 Nov.

  • Deraz, S. A. (2014). Genetic tuned PID controller based speed control of DC motor drive. International Journal of Engineering Trends and Technology (IJETT), 17(2), 88–93.

    Article  Google Scholar 

  • Dobra, P., Trusca, M., & Lazea, G. (2002). Robust controller for a brushless DC motor based on the gain and phase margin. In: Proceeding of IEEE international workshop on advanced motion control (AMC) (pp. 197–202), Maribor, Slovenia, 3–5 July.

  • Hashmia, A. L., & Dakheel, S. H. (2012). Speed control of separately excited DC motor using artificial neural network. Journal of Engineering and Development, 16(4), 349–362.

    Google Scholar 

  • Hassan, A. K., Saraya, M. S., Elksasy, M. S., & Areed, F. F. (2018). Brushless DC motor speed control using PID controller, fuzzy controller, and neuro fuzzy controller. International Journal of Computer Applications, 180(30), 47–52.

    Article  Google Scholar 

  • Hidayat, R., Pramonohadi, S., Sarjiya, S., & Suharyanto, S. (2013). A Comparative study of PID, ANFIS and hybrid PID-ANFIS controllers for speed control of brushless DC motor drive. In: Proceeding of IEEE international conference on computer, control, informatics and its applications (pp. 117–122), Jakarta, Indonesia, 19–21 Nov.

  • Hidayat, R., Pramonohadi, S., Sarjiya, S., & Suharyanto, S. (2015). The design of the hybrid PID-ANFIS controller for speed control of brushless DC motor. Journal of Theoretical and Applied Information Technology, 71(3), 367–375.

    Google Scholar 

  • Ho, M. T., Datta, A., & Bhattacharyya, S. P. (1997). A new approach to feedback stabilization: the discrete-time case. In: Proceedings of the 36th IEEE conference on decision and control (pp. 908–914), San Diego, CA, USA, 10–12 Dec.

  • Hu, J., Burk, T. & Dawson, D. (1994). Nonlinear tracking controllers for brushless DC motors. In: Conference on industry applications society annual meeting (IAS) (pp. 480–487), Denver, CO, USA, 2–5 Oct.

  • Ibrahim, H. E. A., Hassan, F. N., & Shomer, A. O. (2014). Optimal PID control of a brushless DC motor using PSO and BF techniques. Ain Shams Engineering Journal, 5(2), 391–398.

    Article  Google Scholar 

  • Jagan Kumar, M., & Aadaleesan, P. (2015). Speed control of DC motor using genetic algorithm. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 1239–1249.

    Google Scholar 

  • Jaiswal, M., & Phadnis, M. (2013). Speed control of DC motor using genetic algorithm based PID controller. International Journal of Advanced Research in Computer Science and Software Engineering, 3(7), 247–253.

    Google Scholar 

  • Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 697.

    Google Scholar 

  • Kavathe, R., Chandle, J. O., Patil, N., & Kokare, M. (2018). ANFIS Based Speed Control of BLDC Motor with Bidirectional DC–DC Converter. International Journal of Research and Scientific Innovation (IJRSI), 5(6), 153–158.

    Google Scholar 

  • Khandani, K., & Jalali, A. A. (2012). Robust fractional order control of a DC motor based on particle swarm optimization. Advanced Materials Research, 403, 5030–5037.

    Google Scholar 

  • Kraues, P. C. (1987). Analysis of electric machinery. Singapore: Mc Grow-Hill.

    Google Scholar 

  • Liu, Z. Z., Luo, F. L. & Rashid, M. H. (1999). Non-linear speed controllers for series DC Motor. In: Proceedings of IEEE international conference on power electronics and drive systems (PEDS 99) (vol. 1, pp. 333–338), Hong Kong, Hong Kong, 27–29 Jul.

  • Mohammed, N. Q. (2017). DC motor drive with P, PI, and particle swarm optimization speed controllers. International Journal of Computer Applications, 166(12), 42–45.

    Article  Google Scholar 

  • Montiel, O., Sepulveda, R., Melin, P., Castillo, O., Porta, M. A., & Meza, I. M. (2007). Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. In: Proceeding of IEEE symposium on foundations of computational intelligence (FOCI) (531–537), Honolulu, HI, USA, 1–5 Apr.

  • Palma, L. B., Coito, F. V. & Ferreira, B. G. (2015). PSO based on-line optimization for DC motor speed control. In: Proceedings of 9th international conference on compatibility and power electronics (CPE) (pp. 301–306), Costa da Caparica, Portugal, 24–26 Jun.

  • Pan, I., & Das, S. (2013a). Enhancement of fuzzy PID controller with fractional calculus, intelligent fractional order systems and control (pp. 159–193). Berlin: Springer.

    Book  Google Scholar 

  • Pan, I., & Das, S. (2013b). Intelligent fractional order systems and control: An introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Patel, A., & Parikh, K. (2014). Speed control of DC motor using PSO tuned PI controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 9(2), 4–8.

    Article  Google Scholar 

  • Petrova, S. S., & Solov’ev, A. D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24, 361–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny, I. (1999). Fractional-order systems and PIλ Dδ controllers. IEEE Transaction on Automatic Control, 44(1), 208–213.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajasekhar, A., Abraham, A., & Pant, M. (2011). Levy mutated artificial bee colony algorithm for global optimization. In: Proceeding of IEEE international conference on systems, man and cybernetics (SMC) (pp. 655–662), Anchorage, USA, 9–12 Oct.

  • Tripura, P., & Srinivasa Kishore Babu, Y. (2014). Intelligent speed control of DC motor using ANFIS. Journal of Intelligent and Fuzzy Systems: Applications in Engineering and Technology archive, 26(1), 223–227.

    Google Scholar 

  • Varshney, A., Gupta, D., & Dwivedi, B. (2017). Speed response of brushless DC motor using fuzzy PID controller under varying load condition. Journal of Electrical Systems and Information Technology, 4, 310–321.

    Article  Google Scholar 

  • Walaa, M. E., Naglaa, K. B., El-Sayed, M. I., & Moustafa Hassan, M. A. (2017). Speed control of DC motor using PID controller based on different techniques of PSO. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6(12), 8914–8933.

    Google Scholar 

  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions of the ASME, 64, 759–768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Farahani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, G., Rahmani, K. Speed Control of a Separately Excited DC Motor Using New Proposed Fuzzy Neural Algorithm Based on FOPID Controller. J Control Autom Electr Syst 30, 728–740 (2019). https://doi.org/10.1007/s40313-019-00485-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00485-8

Keywords

Navigation