Skip to main content
Log in

Finite-Time Chaos Control for a Chaotic Complex-Variable System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the finite-time stabilization of complex-variable Lorenz system, which is a chaotic system and exhibits chaotic attractors. Based on the finite-time stability theory, an adaptive control technique is presented to achieve finite-time stabilization for chaotic complex-variable system. The significant contribution of this paper is using the ultimate bound set in finite-time chaos control. In fact, we apply the estimated bound set, to the finite-time stabilization of the complex Lorenz system. Simulation results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghababa, M. P., & Aghababa, H. P. (2012). Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. Journal of the Franklin Institute, 349, 2875–2888.

    Article  MathSciNet  MATH  Google Scholar 

  • Balthazar, J. M., Tusset, A. M., & Bueno, A. M. (2014). TM-AFM nonlinear motion control with robustness analysis to parametric errors in the control signal determination. Journal of Theoretical and Applied Mechanics, 52(1), 93–106.

    Google Scholar 

  • Bhat, S. P., & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38(3), 751–766.

    Article  MathSciNet  MATH  Google Scholar 

  • Chuang, C. F., Sun, Y. J., & Wang, W. J. (2012). A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems. Chaos, 22, 043108.

    Article  Google Scholar 

  • Effati, S., Saberi-Nadjafi, J., & Saberi Nik, H. (2014). Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Applied Mathematical Modelling, 38, 759–774.

    Article  MathSciNet  Google Scholar 

  • Feng, Y., Yu, X., & Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12), 2159–2167.

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler, A. C., Gibbon, J. D., & McGuinness, M. J. (1982). The complex Lorenz equations. Physica D, 4(2), 139–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, Y., & Jiang, Z. (2006). Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Transactions on Automatic Control, 51(12), 1950–1956.

    Article  MathSciNet  Google Scholar 

  • Huang, X., Lin, W., & Yang, B. (2005). Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica, 41(5), 881–888.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C. F., Cheng, K. H., & Yan, J. J. (2009). Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2784–2792.

    Article  Google Scholar 

  • Lee, S. H., Park, J. B., & Choi, Y. H. (2009). Finite time control of nonlinear underactuated systems using terminal sliding surface. In IEEE international symposium on industrial electronics (pp. 626–631). Seoul Olympic Parktel, Seoul.

  • Li, R. H., Chen, W. S., & Li, S. (2013). Finite-time stabilization for hyper-chaotic Lorenz system families via adaptive control. Applied Mathematical Modelling, 37, 1966–1972.

    Article  MathSciNet  Google Scholar 

  • Mahmoud, G. M., Bountis, T., & Mahmoud, E. E. (2007). Active control and global synchronization for complex Chen and Lü systems. International Journal of Bifurcation and Chaos, 17, 4295–4308.

    Article  MathSciNet  Google Scholar 

  • Mahmoud, G. M., & Mahmoud, E. E. (2007). Basic properties and chaotic synchronization of complex Lorenz system. International Journal of Modern Physics, 18(2), 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, G. M., Mahmoud, E. E., & Ahmed, M. E. (2009). On the hyperchaotic complex Lü system. Nonlinear Dynamics, 58, 725–738.

    Article  MathSciNet  MATH  Google Scholar 

  • Ning, C. Z., & Haken, H. (1990). Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. Physical Review A, 41, 3826–3837.

    Article  Google Scholar 

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64, 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  • Rafikov, M., & Balthazar, J. M. (2008). On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Communications in Nonlinear Science and Numerical Simulation, 13(7), 1246–1255.

    Article  MathSciNet  MATH  Google Scholar 

  • Roopaei, M., Sahraei, B. R., & Lin, T. C. (2010). Adaptive sliding mode control in a novel class of chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 15, 4158–4170.

    Article  MathSciNet  MATH  Google Scholar 

  • Saberi Nik, H., Effati, S., & Saberi-Nadjafi, J. (2015a). Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity, 20(4), 30–44.

    Article  MathSciNet  Google Scholar 

  • Saberi Nik, H., Effati, S., Saberi-Nadjafi, J. (2015b). Ultimate bound sets and exponential finite-time synchronization for a complex chaotic system. Journal of Complexity. doi:10.1016/j.jco.2015.03.001.

  • Saberi Nik, H., Van Gorder, R.A., & Gambino, G. (2015c). The chaotic Dadras-Momeni system: Control and hyperchaotification. IMA Journal of Mathematical Control and Information. doi:10.1093/imamci/dnu050

  • Wang, H., Han, Z. Z., Xie, Q. Y., & Zhang, W. (2009). Finite-time chaos control via nonsingular terminal sliding mode control. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2728–2733.

  • Yassen, M. T. (2007). Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Physics Letters A, 360, 582–587.

    Article  Google Scholar 

  • Yu, W. (2010). Finite-time stabilization of three-dimensional chaotic systems based on CLF. Physics Letters A, 374, 3021–3024.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, W. G. (2010). Stabilization of three-dimensional chaotic systems via single state feedback controller. Physics Letters A, 374, 1488–1492.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Saberi Nik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi Nik, H. Finite-Time Chaos Control for a Chaotic Complex-Variable System. J Control Autom Electr Syst 26, 371–379 (2015). https://doi.org/10.1007/s40313-015-0182-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0182-6

Keywords

Navigation