Skip to main content
Log in

Stable Matchings in the Marriage Model with Indifferences

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Irving [3] refered to stable matchings as weakly stable matchings. In this paper, we use the term stable matching.

  2. Item 3 is equivalent to say that \(\mu \) is a homogeneous function of order two, i.e. \(\mu ^{2}\left( i\right) =i,\) for all \(i\in M\cup W.\)

  3. By abuse of notation, we continue to write \(R_{M}\) for a order over \( S(R)/_{\sim }.\)

References

  1. Roth, A., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  2. Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences. Econometrica 72, 257–279 (2004)

    Article  MathSciNet  Google Scholar 

  3. Irving, R.: Stable marriage and indifference. Discrete Appl. Math. 48, 261–272 (1994)

    Article  MathSciNet  Google Scholar 

  4. Knuth, D.: Stable Marriage. Les Presses de lUniversit de Montral, Montreal (1976)

    Google Scholar 

  5. Manlove, D.: The structure of stable marriage with indifference. Discrete Appl. Math. 12, 167–181 (2002)

    Article  MathSciNet  Google Scholar 

  6. Spieker, B.: The set of super-stable marriages forms a distributive lattice. Discrete Appl. Math. 58, 79–84 (1985)

    Article  MathSciNet  Google Scholar 

  7. Erdil, A., Ergin, H.: Two-sided matching with indifferences. J. Econ. Theory 171, 268–292 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sotomayor, M.: The Pareto-stability concept is a natural solution concept for discrete matching markets with indifferences. Int. J. Game Theory 40, 631–644 (2011)

    Article  MathSciNet  Google Scholar 

  9. Roth, A.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92, 991–1016 (1984)

    Article  Google Scholar 

  10. Roth, A.: On the allocation of residents to rural hospitals: a general property of two-sided matching markets. Econometrica 54, 425–427 (1986)

    Article  MathSciNet  Google Scholar 

  11. McVtie, D., Wilson, L.: Stable marriage assignment for unequal sets. BIT Numer. Math. 10, 295–309 (1970)

    Article  Google Scholar 

  12. Irving, R., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties. In: Proceedings of ICALP 2000. Lecture Notes in Computer Science, 1851, pp. 259–271 (2000)

  13. Erdil, A., Ergin, H.: What’s the matter with tie-breaking? Improvement efficiency in school choice. Am. Econ. Rev. 98, 669–89 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Juarez.

Additional information

This research was supported by the Universidad Nacional de San Luis (No. PROICO 319502), and from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (No. PIP 112-201501-00505), and from Agencia Nacional de Promoción Cientifíca y Tecnológica (No. PICT 2017-2355).

Appendix

Appendix

1.1 Strongly Stable Matchings and the Closing Property

Proof of Lemma 1

Let \(\mu _{1},\) \(\mu _{2},\) \(\mu _{3}\in \mathcal {M}\) for all \(i\in A\).

1. Let us assume that \(\mu _{1}I_{i}\mu _{2}\) and \(\mu _{2}P_{i}\mu _{3}\). From the definition of \(I_{i}\) and \(P_{i}\), we have that

$$\begin{aligned}&\mu _{1}R_{i}\mu _{2}\text { and }\mu _{2}R_{i}\mu _{1} , \end{aligned}$$
(A1)
$$\begin{aligned}&\mu _{2}R_{i}\mu _{3}\text { and }\overline{\mu _{3}R_{i}\mu _{2}}. \end{aligned}$$
(A2)

The transitivity of \(R_{i}\) and conditions (A1), (A2) imply that \(\mu _{1}R_{i}\mu _{3}.\) Suppose that \(\mu _{3}R_{i}\mu _{1}.\) Condition ( A1) and transitivity of \(R_{i}\) imply that \(\mu _{3}R_{i}\mu _{2}.\) This contradicts (A2). Hence, \(\overline{\mu _{3}R_{i}\mu _{1}}\) and \( \mu _{1}P_{i}\mu _{3}.\)

2. Similarly, we can prove that if \(\mu _{1}P_{i}\mu _{2}\) and \(\mu _{2}I_{i}\mu _{3},\) then \(\mu _{1}P_{i}\mu _{3}.\)

3. We assume that \(\mu _{1}P_{i}\mu _{2}\) and \(\mu _{i}^{\prime }\in \left[ \mu _{i}\right] \) for \(i=1,2.\) Then,

$$\begin{aligned} \mu _{1}^{\prime }I_{i}\mu _{1}\text { and }\mu _{1}P_{i}\mu _{2}. \end{aligned}$$
(A3)

Condition (A3) and the fact that \(\mu _{1}P_{i}\mu _{2}\) imply that

$$\begin{aligned} \mu _{1}^{\prime }P_{i}\mu _{2}\text {.} \end{aligned}$$

We have that \(\mu _{1}P_{i}\mu _{2}\) and \(\mu _{2}I_{i}\mu _{2}\). By item 2, we have

$$\begin{aligned} \mu _{1}^{\prime }P_{i}\mu _{2}^{\prime }. \end{aligned}$$

4. It follows from 1, 2 and 3.

Proof of Proposition 1

Let \(\left[ \mu _{1}\right] ,\) \(\left[ \mu _{2}\right] ,\) \(\left[ \mu _{3}\right] \in S(R)/_{\sim }\) for all \(i\in A\), and let \(\mu _{1}^{\prime }\in \left[ \mu _{1}\right] ,\mu _{2}^{\prime }\in \left[ \mu _{2}\right] \) and \(\mu _{3}^{\prime }\in \left[ \mu _{3}\right] .\)

  1. 1.

    Reflexivity. Since \(R_{M}\) is a reflexive relation over \( \mathcal {M}\), we have that

    $$\begin{aligned} \mu _{1}^{\prime }R_{M}\mu _{1}^{\prime }, \end{aligned}$$

    so

    $$\begin{aligned} \left[ \mu _{1}\right] R_{M}\left[ \mu _{1}\right] . \end{aligned}$$
  2. 2.

    Transitivity. \(R_{M}\) is a transitive relation over \( \mathcal {M}.\) If \(\mu _{1}R_{i}\mu _{2}\) and \(\mu _{2}R_{i}\mu _{3}\), then \( \mu _{1}R_{i}\mu _{3},\) i.e.

    $$\begin{aligned} \left[ \mu _{1}\right] R_{M}\left[ \mu _{2}\right] ,\left[ \mu _{2}\right] R_{M}\left[ \mu _{3}\right] \text { and }\left[ \mu _{1}\right] R_{M}\left[ \mu _{3}\right] . \end{aligned}$$
  3. 3.

    Antisymmetric. Assume that

    $$\begin{aligned} \left[ \mu _{1}\right] R_{M}\left[ \mu _{2}\right] \text { and }\left[ \mu _{2}\right] R_{M}\left[ \mu _{1}\right] , \end{aligned}$$

    i.e.

    $$\begin{aligned} \mu _{1}R_{M}\mu _{2}\text { and }\mu _{2}R_{M}\mu _{1}. \end{aligned}$$

    Hence, \(\mu _{1}I_{M}\mu _{2}\), i.e. \(\left[ \mu _{1}\right] =\left[ \mu _{2} \right] \).

The following Manlove’s result will be useful in proof of Proposition 4.

Lemma A1

(Manlove) Let (MWR) be a marriage model with indifferences, and let \(\mu \) and \(\mu ^{\prime }\) be two strongly stable matchings. Suppose that for any men \(m_{1}\in M,\) \(\mu (m_{1})=w_{1}\) and \(\mu ^{\prime }(m_{1})=w_{2},\) where \(w_{1}\ne w_{2}\) and \( w_{2}R_{m_{1}}w_{1}\). Then there are sequences of agents involving, \(m_{1}, w_{1}\) and \(w_{2}\) as follows: for some \(r>1,\) there are r men \(m_{1},\cdots ,m_{r}\) and r women \(w_{1},\cdots ,w_{r}\) which satisfies

$$\begin{aligned} \mu (m_{i})=w_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }\mu ^{\prime }(m_{i})=w_{i+1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

(1) If \(w_{2}I_{m_{1}}w_{1},\) then

$$\begin{aligned} w_{i+1}I_{m_{i}}w_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and } m_{i}I_{w_{i}}m_{i-1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r), \end{aligned}$$

(2) If \(w_{2}P_{m_{1}}w_{1},\) then

$$\begin{aligned} w_{i+1}P_{m_{i}}w_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and } m_{i}P_{w_{i}}m_{i-1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r), \end{aligned}$$

where \(m_{0}=m_{r}, m_{r+1}=m_{1}\) and \(w_{r+1}=w_{1}.\)

We could formulate a symmetric lemma by exchanging the role of women and men.

Proof of Proposition 4

Let \(\mu ,\mu ^{\prime }\in \mathrm{SS}(R)\), if \(J_{M}(\mu ,\mu ^{\prime })=J_{W}(\mu ,\mu ^{\prime })=\varnothing , \) then the result follows. We assume that \(J_{M}(\mu ,\mu ^{\prime })\ne \varnothing .\) We will show that

$$\begin{aligned} J_{M}(\mu ,\mu ^{\prime })\subseteq \mu (J_{W}(\mu ,\mu ^{\prime })). \end{aligned}$$

Let \(m_{1}\in J_{M}(\mu ,\mu ^{\prime }).\) This means that

$$\begin{aligned} \mu (m_{1})I_{m_{1}}\mu ^{\prime }(m_{1}). \end{aligned}$$

Since \(m_{1}\in J_{M}(\mu ,\mu ^{\prime }),\) we have that \(\mu (m_{1})\ne \mu ^{\prime }(m_{1}).\) Then there exist \(w_{1}\) and \(w_{2}\) such that \(\mu (m_{1})=w_{1}\) and \(\mu ^{\prime }(m_{1})=w_{2}.\) Since \(m_{1}\in J_{M}(\mu ,\mu ^{\prime })\), we have that

$$\begin{aligned} w_{1}=\mu (m_{1})I_{m_{1}}\mu ^{\prime }(m_{1})=w_{2}. \end{aligned}$$

By Lemma A1 (Manlove), we have that there exist successions of agents \( m_{1},\cdots ,m_{r}\) and \(w_{1},\cdots ,w_{r}\) such that

$$\begin{aligned} \mu (m_{i})=w_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }\mu ^{\prime }(m_{i})=w_{i+1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

Also

$$\begin{aligned} w_{i+1}I_{m_{i}}w_{i}(1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }m_{i}I_{w_{i}}m_{i-1}(1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

If \(i=1\), then

$$\begin{aligned} m_{1}=\mu (w_{1})I_{w_{1}}\mu ^{\prime }(w_{1}), \end{aligned}$$

i.e. \(w_{1}\in J_{W}(\mu ,\mu ^{\prime }).\) Hence, \(\mu (w_{1})=m_{1}\in \mu (J_{W}(\mu ,\mu ^{\prime })).\)

Now, we will show that

$$\begin{aligned} \mu (J_{W}(\mu ,\mu ^{\prime }))\subseteq J_{M}(\mu ,\mu ^{\prime }). \end{aligned}$$

Let \(\mu (w_{1})\in \mu (J_{W}(\mu ,\mu ^{\prime })).\) Since \(w_{1}\in J_{W}(\mu ,\mu ^{\prime })\), we have that

$$\begin{aligned} \mu (w_{1})I_{w_{1}}\mu ^{\prime }(w_{1}). \end{aligned}$$

Notice that \(\mu (m_{1})\ne \mu ^{\prime }(m_{1}).\) Then there exist \(m_{1}\) and \(m_{2}\) such that \(\mu (w_{1})=m_{1}\) and \(\mu ^{\prime }(w_{1})=m_{2}.\) By Lemma A1 (Manlove), we have that there exist successions of agents \( m_{1},\cdots ,m_{r}\) and \(w_{1},\cdots ,w_{r}\) such that

$$\begin{aligned} \mu (w_{i})=m_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }\mu ^{\prime }(w_{i})=m_{i+1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

Also

$$\begin{aligned} m_{i+1}I_{m_{i}}m_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and } w_{i}I_{w_{i}}w_{i-1}(1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

If \(i=1\), then

$$\begin{aligned} w_{1}=\mu (m_{1})I_{m_{1}}\mu ^{\prime }(m_{1}), \end{aligned}$$

i.e. \(m_{1}\in J_{M}(\mu ,\mu ^{\prime }).\) Hence, \(m_{1}=\mu (w_{1})\in J_{M}(\mu ,\mu ^{\prime }).\)

Proof of Proposition 5

Let \(\mu ,\mu ^{\prime }\in \mathrm{SSS}(R)\), if \(J_{M}(\mu ,\mu ^{\prime })=J_{W}(\mu ,\mu ^{\prime })=\varnothing ,\) then the result follows. We assume that \(J_{M}(\mu ,\mu ^{\prime })\ne \varnothing .\)

Let \(m_{1}\in J_{M}(\mu ,\mu ^{\prime }).\) This means that

$$\begin{aligned} \mu (m_{1})I_{m_{1}}\mu ^{\prime }(m_{1}). \end{aligned}$$
(A4)

Since \(m_{1}\in J_{M}(\mu ,\mu ^{\prime }),\) we have that \(\mu (m_{1})\ne \mu ^{\prime }(m_{1}).\) Then there exist \(w_{1}\) and \(w_{2}\) such that \(\mu (m_{1})=w_{1}\) and \(\mu ^{\prime }(m_{1})=w_{2}.\) Since \(m_{1}\in J_{M}(\mu ,\mu ^{\prime })\), we have that

$$\begin{aligned} w_{1}=\mu (m_{1})I_{m_{1}}\mu ^{\prime }(m_{1})=w_{2}. \end{aligned}$$
(A5)

Since \(\mu ,\mu ^{\prime }\in \mathrm{SSS}(R)\subseteq \mathrm{SS}(R)\), we can apply Lemma A1 (Manlove). Then there exist successions of agents \(m_{1},\cdots ,m_{r}\) and \( w_{1},\cdots ,w_{r}\) such that

$$\begin{aligned} \mu (m_{i})=w_{i}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }\mu ^{\prime }(m_{i})=w_{i+1}\quad (1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

Also

$$\begin{aligned} w_{i+1}I_{m_{i}}w_{i}(1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r)\text { and }m_{i}I_{w_{i}}m_{i-1}(1\hbox {\,\,\char 054\,\,}i\hbox {\,\,\char 054\,\,}r). \end{aligned}$$

If \(i=1\), then

$$\begin{aligned} m_{1}=\mu (w_{1})I_{w_{1}}\mu ^{\prime }(w_{1}). \end{aligned}$$
(A6)

Conditions A5 and A6 imply that the pair \((m_{1},w_{1})\) superblocks \(\mu ^{\prime }.\) This contradicts that \(\mu ^{\prime }\) is a superstable matching. This contradiction came from assuming that \(J_{M}(\mu ,\mu ^{\prime })\ne \varnothing .\) So the closing property holds.

The next example shows that the closing property is not a necessary condition to the lattice structure of the stable matching set.

Example 6

Let \(M=\left\{ m_{1},m_{2},m_{3}\right\} \) be the set of men and \(W=\left\{ w_{1},w_{2},w_{3}\right\} \) be the set of women. Consider the preference profile R : 

$$\begin{aligned} \begin{array}{ll} R_{m_{1}}:\left[ w_{1},w_{2}\right] ,m_{1}, &{} R_{w_{1}}:m_{3},m_{2},m_{1},w_{1}, \\ R_{m_{2}}:w_{2},w_{1},w_{3},m_{2}, &{} R_{w_{2}}:m_{1},m_{2},w_{2}, \\ R_{m_{3}}:w_{3},w_{1},m_{3}, &{} R_{w_{3}}:m_{2},m_{3},w_{3}. \end{array} \end{aligned}$$

The set of stable matchings consists of the following matchings:

$$\begin{aligned} \mu _{1}=\left( \begin{array}{ccc} m_{1} &{} m_{2} &{} m_{3} \\ w_{1} &{} w_{2} &{} w_{3} \end{array} \right) ,\quad \mu _{2}=\left( \begin{array}{ccc} m_{1} &{} m_{2} &{} m_{3} \\ w_{2} &{} w_{1} &{} w_{3} \end{array} \right) ,\quad \mu _{3}=\left( \begin{array}{ccc} m_{1} &{} m_{2} &{} m_{3} \\ w_{2} &{} w_{3} &{} w_{1} \end{array} \right) . \end{aligned}$$

Observe that \(\mu _{1}R_{m_{i}}\mu _{2}R_{m_{i}}\mu _{3}\), for \(i=1,2,3.\) Also \(\mu _{3}R_{w_{i}}\mu _{2}R_{w_{i}}\mu _{1}\) for\(i=1,2,3.\) In this example, we have a lattice structure over stable matching set. Nevertheless, the stable matching set does not satisfy the closing property. We have

$$\begin{aligned} J_{M}(\mu _{1},\mu _{2})=\left\{ m_{1}\right\} \text { and }J_{W}(\mu _{1},\mu _{2})=\varnothing . \end{aligned}$$

So

$$\begin{aligned} \mu _{1}(J_{M}(\mu _{1},\mu _{2}))=\mu _{1}(m_{1})=w_{1}\ne J_{W}(\mu _{1},\mu _{2}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez, N., Oviedo, J. Stable Matchings in the Marriage Model with Indifferences. J. Oper. Res. Soc. China 9, 593–617 (2021). https://doi.org/10.1007/s40305-020-00315-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-020-00315-8

Keywords

Mathematics Subject Classification

Navigation