Skip to main content
Log in

Echocardiographic Phenotypes of Subclinical Organ Damage: Clinical and Prognostic Value in the General Population. Findings from the Pamela Study

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Subclinical alterations in cardiac structure and function include a variety of abnormal phenotypes of established adverse prognostic significance such as left ventricular hypertrophy (LVH), alterations of LV geometry, left atrial (LA) enlargement, and aortic root (AR) dilatation. The excess cardiovascular (CV) risk associated with these phenotypes has been consistently demonstrated in different clinical settings such in patients with systemic hypertension, coronary heart disease, diabetes mellitus, chronic kidney disease, heart failure and in geneal population samples. The Pressioni Monitorate e Loro Associazioni (PAMELA), a longitudinal population-based study originally designed to assess the normality values, prognostic significance of office, home and 24-hour blood pressure, including among the many clinical and laboratory variables the collection of echocardiographic data, allowed to gather important information on the clinical prognostic significance of subclinical cardiac damage during a long follow-up period. This article summarizes the original findings provided by the PAMELA study on the clinical correlates and prognostic significance of echocardiographic markers of subclinical organa damage namely LVH, left atrial enlargement (LA) and AR dilatation at the community level.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.   2
Fig.   3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tadic M, Cuspidi C, Marwick TH. Phenotyping the hypertensive heart. Eur Heart J. 2022;43(38):3794–810.

    Article  PubMed  Google Scholar 

  2. Perrone-Filardi P, Coca A, Galderisi M, Paolillo S, Alpendurada F, de Simone G, Donal E, Kahan T, Mancia G, Redon J, Schmieder R, Williams B, Agabiti-Rosei E. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients. Eur Heart J Cardiovasc Imaging. 2017;18(9):945–60.

    Article  PubMed  Google Scholar 

  3. Williams B, Mancia G, Spiering W, AgabitiRosei E, Azizi M, Burnier M, Clement D, Coca A, De Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen S, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder R, Shlyakhto E, Tsioufis K, Aboyans V, Desormais I. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Press. 2018;27(6):314–40.

    Article  PubMed  Google Scholar 

  4. Mancusi C, Lembo M, Manzi MV, Basile C, Fucile I, Morisco C. From structural to functional hypertension mediated target organ damage—a long way to heart failure with preserved ejection fraction. J Clin Med. 2022;11(18):5377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  6. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  7. Vasan RS, Urbina EM, Jin L, Xanthakis V. Prognostic significance of echocardiographic measures of cardiac remodeling in the community. Curr Cardiol Reports. 2021. https://doi.org/10.1007/s11886-021-01512-4.

    Article  Google Scholar 

  8. Fitzpatrick JK, Ambrosy AP, Parikh RV, Tan TC, Bansal N, Go AS. Prognostic value of echocardiography for heart failure and death in adults with chronic kidney disease. Am Heart J. 2022;248:84–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Özbek BT, Modin D, Møgelvang R, Jørgensen PG, Jensen MT, Schnohr P, Gislason GH, Biering-Sørensen T. Echocardiographic predictors of long-term adverse cardiovascular outcomes in participants with and without diabetes mellitus: a follow-up analysis of the Copenhagen City Heart Study. Diabet Med. 2021. https://doi.org/10.1111/dme.14627.

    Article  PubMed  Google Scholar 

  10. Desai CS, Bartz TM, Gottdiener JS, Lloyd-Jones DM, Gardin JM. Usefulness of left ventricular mass and geometry for determining 10-year prediction of cardiovascular disease in adults aged >65 years (from the cardiovascular health study). Am J Cardiol. 2016;118(5):684–90.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am College Cardiol. 2003;42(7):1206–7.

    Article  Google Scholar 

  12. Khan MA, Yang EY, Zhan Y, Judd RM, Chan W, Nabi F, Heitner JF, Kim RJ, Klem I, Nagueh SF, Shah DJ. Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: a multicenter study. J Cardiovasc Magn Reson. 2019. https://doi.org/10.1186/s12968-018-0517-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gardin JM, Arnold AM, Polak J, Jackson S, Smith V, Gottdiener J. Usefulness of aortic root dimension in persons ≥65 years of age in predicting heart failure, stroke, cardiovascular mortality, all-cause mortality and acute myocardial infarction (from the Cardiovascular Health Study). Am J Cardiol. 2006;97(2):270–5.

    Article  PubMed  Google Scholar 

  14. Lai CL, Chien KL, Hsu HC, Su TC, Chen MF, Lee YT. Aortic root dimension as an independent predictor for all-cause death in adults < 65 years of age (from the chin-shan community cardiovascular cohort study). Echocardiography. 2010;27(5):487–95.

    Article  PubMed  Google Scholar 

  15. Kim HM, Hwang IC, Choi HM, Yoon YE, Cho GY. Prognostic implication of left ventricular hypertrophy regression after antihypertensive therapy in patients with hypertension. Front Cardiovasc Med. 2022. https://doi.org/10.3389/fcvm.2022.1082008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2023;20(5):347–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mancia G, Sega R, Bravi C, De Vito G, Valagussa F, Cesana G, Zanchetti A. Ambulatory blood pressure normality: results from the PAMELA study. J Hypertens. 1995;13(12):1377–90.

    Article  CAS  PubMed  Google Scholar 

  18. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, Ferrario M, Mancia G. Blood pressure variability and organ damage in a general population: results from the PAMELA study. Hypertension. 2002;39(2):710–4.

    Article  CAS  PubMed  Google Scholar 

  19. Grassi G, Quarti-Trevano F, Dell’Oro R, Cuspidi C, Mancia G. The PAMELA research project: a 25-year long journey. Panminerva Med. 2021. https://doi.org/10.23736/S0031-0808.21.04396-2.

    Article  PubMed  Google Scholar 

  20. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Cheng S, Aragam J, Levy D, Benjamin EJ, Vasan RS, Mitchell GF. Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the framingham heart study. J Am Heart Assoc. 2015. https://doi.org/10.1161/JAHA.115.002693.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grassi G, Seravalle G, Mancia G. Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. Eur J Clin Investigat. 2015;45(12):1367–75.

    Article  Google Scholar 

  22. du Toit WL, Schutte AE, Gafane-Matemane LF, Kruger R, Mels CMC. The renin-angiotensin-system and left ventricular mass in young adults: the African-PREDICT study. Blood Press. 2021;30(2):98–107.

    Article  PubMed  Google Scholar 

  23. Lillo R, Graziani F, Franceschi F, Iannaccone G, Massetti M, Olivotto I, Crea F, Liuzzo G. Inflammation across the spectrum of hypertrophic cardiac phenotypes. Heart Fail Rev. 2023;28(5):1065–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin A, Pieszko K, Park C, Ignor K, Williams MC, Slomka P, Dey D. Artificial intelligence in cardiovascular imaging: enhancing image analysis and risk stratification. BJR Open. 2023. https://doi.org/10.1259/bjro.20220021.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35(2):580–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rosei EA, Muiesan ML, Salvetti M, Paini A, Rosei CA, Aggiusti C, Bertacchini F, Castellano M, Giacchè M. The vobarno study. Panminerva Med. 2021. https://doi.org/10.23736/S0031-0808.21.04433-5.

    Article  Google Scholar 

  27. Sega R, Trocino G, Lanzarotti A, Carugo S, Cesana G, Schiavina R, Valagussa F, Bombelli M, Giannattasio C, Zanchetti A, Mancia G. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension: data from the general population (Pressione Arteriose Monitorate E Loro Associazioni [PAMELA] Study). Circulation. 2001;104(12):1385–92.

    Article  CAS  PubMed  Google Scholar 

  28. Mancia G, Carugo S, Grassi G, Lanzarotti A, Schiavina R, Cesana G, Sega R. Prevalence of left ventricular hypertrophy in hypertensive patients without and with blood pressure control: data from the PAMELA population. Hypertension. 2002;39(3):744–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cuspidi C, Facchetti R, Bombelli M, Tadic M, Sala C, Grassi G, Mancia G. High normal blood pressure and left ventricular hypertrophy echocardiographic findings from the PAMELA population. Hypertension. 2019;73(3):612–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cuspidi C, Facchetti R, Bombelli M, Sala C, Negri F, Grassi G, Mancia G. Nighttime blood pressure and new-onset left ventricular hypertrophy: findings from the Pamela population. Hypertension. 2013;62(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  31. Cuspidi C, Facchetti R, Quarti-Trevano F, Sala C, Tadic M, Grassi G, Mancia G. Incident left ventricular hypertrophy in masked hypertension. Hypertension. 2019;74(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  32. Mancia G, Facchetti R, Vanoli J, Dell’Oro R, Seravalle G, Grassi G. White-coat hypertension without organ damage: impact on long-term mortality, new hypertension, and new organ damage. Hypertension. 2022;79(5):1057–66.

    Article  CAS  PubMed  Google Scholar 

  33. Cuspidi C, Sala C, Tadic M, Rescaldani M, Grassi G, Mancia G. Untreated masked hypertension and subclinical cardiac damage: a systematic review and meta-analysis. Am J Hypertens. 2015;28(12):1392–402.

    Article  PubMed  Google Scholar 

  34. Mancia G, Facchetti R, Bombelli M, Cuspidi C, Grassi G. White-coat hypertension: pathophysiological and clinical aspects: excellence award for hypertension research 2020. Hypertension. 2021;78(6):1677–88.

    Article  CAS  PubMed  Google Scholar 

  35. Cuspidi C, Quarti F, Dell’Oro R, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G. Long-term changes in left ventricular mass echocardiographic findings from a general population. J Hypertens. 2017;35(11):2303–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cuspidi C, Facchetti R, Seravalle G, Tadic M, Mancia G, Grassi G. Targeting persistent normal left ventricular geometry in the general population: a 25-year follow-up study. J Hypertens. 2021;39(5):952–60.

    Article  CAS  PubMed  Google Scholar 

  37. Asayama K, Stolarz-Skrzypek K, Yang WY, Hansen TW, Brguljan-Hitij J, Odili AN, Li Y, Staessen JA. What did we learn from the international databases on ambulatory and home blood pressure in relation to cardiovascular outcome? Hypertens Res. 2023;46(4):934–49.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vinyoles E, Puig C, Roso-Llorach A, Soldevila N, de la Sierra A, Gorostidi M, Segura J, Divison-Garrote JA, Muñoz MÁ, Ruilope LM. Role of ambulatory blood pressure on prediction of cardiovascular disease. A cohort study. J Hum Hypertens. 2023;37(4):279–85.

    Article  PubMed  Google Scholar 

  39. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, Capra A, Giannattasio C, Dell’Oro R, Grassi G, Sega R, Mancia G. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64.

    Article  CAS  PubMed  Google Scholar 

  40. Bombelli M, Vanoli J, Facchetti R, Maloberti A, Cuspidi C, Grassi G, Mancia G. Impact of the increase in left ventricular mass on the risk of long-term cardiovascular mortality: a prospective cohort study. Hypertension. 2023;80(6):1321–30.

    Article  CAS  PubMed  Google Scholar 

  41. Cuspidi C, Facchetti R, Bombelli M, Sala C, Grassi G, Mancia G. Differential value of left ventricular mass index and wall thickness in predicting cardiovascular prognosis: Data from the PAMELA population. Am J Hypertens. 2014;27(8):1079–86.

    Article  CAS  PubMed  Google Scholar 

  42. Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G. Prognostic value of left ventricular mass normalized to different body size indexes: Findings from the PAMELA population. J Hypertens. 2015;33(5):1082–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–8.

    Article  CAS  PubMed  Google Scholar 

  44. Khouri MG, Peshock RM, Ayers CR, De Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on Left ventricular geometry the dallas Heart study. Circ Cardiovasc Imaging. 2010;3(2):422–9.

    Article  Google Scholar 

  45. Bang CN, Gerdts E, Aurigemma GP, Boman K, de Simone G, Dahlöf B, Køber L, Wachtell K, Devereux RB. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7(3):422–9.

    Article  PubMed  Google Scholar 

  46. Barbieri A, Giubertoni E, Bartolacelli Y, Bursi F, Manicardi M, Boriani G. New classification of geometric patterns considering left ventricular volume in patients with chronic aortic valve regurgitation: prevalence and association with adverse cardiovascular outcomes. Echocardiography. 2019;36(1):38–46.

    Article  PubMed  Google Scholar 

  47. Paoletti E, De Nicola L, Gabbai FB, Chiodini P, Ravera M, Pieracci L, Marre S, Cassottana P, Lucà S, Vettoretti S, Borrelli S, Conte G, Minutolo R. Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension. Clin J Am Soc Nephrol. 2016;11(2):271–9.

    Article  CAS  PubMed  Google Scholar 

  48. Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G. Risk of mortality in relation to an updated classification of left ventricular geometric abnormalities in a general population: the Pamela study. J Hypertens. 2015;33(10):2133–40.

    Article  CAS  PubMed  Google Scholar 

  49. Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G. Prevalence and correlates of new-onset left ventricular geometric abnormalities in a general population: the PAMELA study. J Hypertens. 2016;34(7):1423–31.

    Article  CAS  PubMed  Google Scholar 

  50. Xiao J, Ren WL, Liang YY, Shen H, Gao YX, Chu MJ, Li Z, Wang XJ, Zhang ZF, Zhuang X, Yu YF. Effectiveness of lifestyle and drug intervention on hypertensive patients: a randomized community intervention trial in rural China. J Gen Intern Med. 2020;35(12):3449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mancia G, Cappuccio FP, Burnier M, Coca A, Persu A, Borghi C, Kreutz R, Sanner B. Perspectives on improving blood pressure control to reduce the clinical and economic burden of hypertension. J Intern Med. 2023;294(3):251–68.

    Article  CAS  PubMed  Google Scholar 

  52. Aurigemma GP, Gottdiener JS, Arnold AM, Chinali M, Hill JC, Kitzman D. Left atrial volume and geometry in healthy aging the cardiovascular health study. Circ Cardiovasc Imaging. 2009;2(4):282–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ikejder Y, Sebbani M, Hendy I, Khramz M, Khatouri A, Bendriss L. Impact of arterial hypertension on left atrial size and function. Biomed Res Int. 2020. https://doi.org/10.1155/2020/2587530.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tadic M, Cuspidi C. Left atrial function in diabetes: does it help? Acta Diabetol. 2021;58(2):131–7.

    Article  PubMed  Google Scholar 

  55. Nedios S, Dinov B, Seewöster T, Lindemann F, Richter S, Arya A, Dagres N, Husser D, Bollmann A, Hindricks G, Müssigbrodt A. Characteristics of left atrial remodeling in patients with atrial fibrillation and hypertrophic cardiomyopathy in comparison to patients without hypertrophy. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-91892-y.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fujimoto K, Inoue K, Saito M, Higashi H, Kono T, Uetani T, Aono J, Nagai T, Nishimura K, Suzuki J, Okura T, Ikeda S, Nakatani S, Higaki J. Incremental value of left atrial active function measured by speckle tracking echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography. 2018;35(8):1138–48.

    Article  PubMed  Google Scholar 

  57. Tsioufis C, Stougiannos P, Taxiarchou E, Skiadas I, Chatzis D, Thomopoulos C, Lalos S, Stefanadis C, Kallikazaros I. The interplay between haemodynamic load, brain natriuretic peptide and left atrial size in the early stages of essential hypertension. J Hypertens. 2006;24(5):965–72.

    Article  CAS  PubMed  Google Scholar 

  58. Bombelli M, Facchetti R, Cuspidi C, Villa P, Dozio D, Brambilla G, Grassi G, Mancia G. Prognostic significance of left atrial enlargement in a general population results of the PAMELA study. Hypertension. 2014;64(6):1205–11.

    Article  CAS  PubMed  Google Scholar 

  59. Stritzke J, Markus MRP, Duderstadt S, Lieb W, Luchner A, Döring A, Keil U, Hense HW, Schunkert H. The aging process of the heart: obesity is the main risk factor for left atrial enlargement during aging. The MONICA/KORA (monitoring of trends and determinations in cardiovascular disease/cooperative research in the region of augsburg) study. J Am Coll Cardiol. 2009;54(21):1982–9.

    Article  PubMed  Google Scholar 

  60. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. Am J Hypertens. 2013;26(4):456–64.

    Article  PubMed  Google Scholar 

  61. Bombelli M, Cuspidi C, Facchetti R, Sala C, Tadic M, Brambilla G, Re A, Villa P, Grassi G, Mancia G. New-onset left atrial enlargement in a general population. J Hypertens. 2016;34(9):1838–45.

    Article  CAS  PubMed  Google Scholar 

  62. McManus DD, Xanthakis V, Sullivan LM, Zachariah J, Aragam J, Larson MG, Benjamin EJ, Vasan RS. Longitudinal tracking of left atrial diameter over the adult life course: clinical correlates in the community. Circulation. 2010;121(5):667–74.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death: the framingham heart study. Circulation. 1995;92(4):835–41.

    Article  CAS  PubMed  Google Scholar 

  64. Markman TM, Habibi M, Venkatesh BA, Zareian M, Wu C, Heckbert SR, Bluemke DA, Lima JAC. Association of left atrial structure and function and incident cardiovascular disease in patients with diabetes mellitus: Results from multi-ethnic study of atherosclerosis (MESA). Eur Heart J Cardiovasc Imaging. 2017;18(10):1138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Froehlich L, Meyre P, Aeschbacher S, Blum S, Djokic D, Kuehne M, Osswald S, Kaufmann BA, Conen D. Left atrial dimension and cardiovascular outcomes in patients with and without atrial fibrillation: a systematic review and meta-analysis. Heart. 2019;105(24):1884–91.

    Article  PubMed  Google Scholar 

  66. Saeed S, Rajani R, Tadic M, Parkin D, Chambers JB. Left atrial volume index predicts adverse events in asymptomatic moderate or severe aortic stenosis. Echocardiography. 2021;38(11):1893–9.

    Article  PubMed  Google Scholar 

  67. Gardin JM, McClelland R, Kitzman D, Lima JAC, Bommer W, Klopfenstein HS, Wong ND, Smith VE, Gottdiener J. M-Mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (The Cardiovascular Health Study). Am J Cardiol. 2001;87(9):1051–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kizer JR, Bella JN, Palmieri V, Liu JE, Best LG, Lee ET, Roman MJ, Devereux RB. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the strong heart study (SHS). Am Heart J. 2006;151(2):412–8.

    Article  PubMed  Google Scholar 

  69. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am College Cardiol. 2019;74(9):1237–63.

    Article  Google Scholar 

  70. Sawabe M, Hamamatsu A, Chida K, Mieno MN, Ozawa T. Age is a major pathobiological determinant of aortic dilatation: a large autopsy study of community deaths. J Atheroscler Thromb. 2011;18(2):157–65.

    Article  PubMed  Google Scholar 

  71. O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension. 2005;45(4):652–8.

    Article  PubMed  Google Scholar 

  72. Farasat SM, Morrell CH, Scuteri A, Ting CT, Yin FCP, Spurgeon HA, Chen CH, Lakatta EG, Najjar SS. Do hypertensive individuals have enlarged aortic root diameters? Insights from studying the various subtypes of hypertension. Am J Hypertens. 2008;21(5):558–63.

    Article  PubMed  Google Scholar 

  73. Gherbesi E, Tadic M, Faggiano A, Sala C, Carugo S, Cuspidi C. Sleep apnea syndrome and large artery subclinical damage: targeting thoracic aortic dilatation. Am J Hypertens. 2022;35(6):543–50.

    Article  PubMed  Google Scholar 

  74. Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev. 2021;196: 111490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lam CSP, Xanthakis V, Sullivan LM, Lieb W, Aragam J, Redfield MM, Mitchell GF, Benjamin EJ, Vasan RS. Aortic root remodeling over the adult life course: longitudinal data from the framingham heart study. Circulation. 2010;122(9):884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size: the framingham heart study. Circulation. 1995;91(3):734–40.

    Article  CAS  PubMed  Google Scholar 

  77. Cuspidi C, Facchetti R, Bombelli M, Re A, Cairoa M, Sala C, Tadic M, Grassi G, Mancia G. Aortic root diameter and risk of cardiovascular events in a general population: data from the PAMELA study. J Hypertens. 2014;32(9):1879–87.

    Article  CAS  PubMed  Google Scholar 

  78. Covella M, Milan A, Totaro S, Cuspidi C, Re A, Rabbia F, Veglio F. Echocardiographic aortic root dilatation in hypertensive patients: a systematic reviewand meta-analysis. J Hypertens. 2014;32(10):1928–35.

    Article  CAS  PubMed  Google Scholar 

  79. Cuspidi C, Facchetti R, Quarti-Trevano F, Dell’Oro R, Tadic M, Mancia G, Grassi G. Incident aortic root dilatation in the general population: findings from the Pamela study. J Hypertens. 2022;40(3):544–52.

    Article  CAS  PubMed  Google Scholar 

  80. Cuspidi C, Facchetti R, Bombelli M, Seravalle G, Grassi G, Mancia G. New-onset aortic dilatation in the population: a quarter-century follow-up. Clin Res Cardiol. 2022;112(11):1529–40.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lam CSP, Gona P, Larson MG, Aragam J, Lee DS, Mitchell GF, Levy D, Cheng S, Benjamin EJ, Vasan RS. Aortic root remodeling and risk of heart failure in the framingham heart study. JACC Hear Fail. 2013;1(1):79–83.

    Article  Google Scholar 

  82. Yu S, Guo X, Li G, Yang H, Zheng L, Sun Y. Gender discrepancy in the predictive effect of aortic root diameter on incidence of cardiovascular events among rural Northeast Chinese. BMJ Open. 2022;12(9): e039207.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tadic M, Gherbesi E, Sala C, Carugo S, Cuspidi C. Is thoracic aortic diameter an independent predictor of cardiovascular disease and mortality? A Narrative Review. Front Cardiovasc Med. 2022. https://doi.org/10.3389/fcvm.2022.867026.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cuspidi C, Gherbesi E, Faggiano A, Sala C, Grassi G, Tadic M. Unmasking left ventricular systolic dysfunction in masked hypertension: looking at myocardial strain. A review and meta-analysis. J Hypertens. 2023;41(2):344–50.

    Article  CAS  PubMed  Google Scholar 

  85. Genovesi S, Tassistro E, Giussani M, Antolini L, Lieti G, Orlando A, Montemerlo M, Patti I, Parati G. Association between lifestyle modifications and improvement of early cardiac damage in children and adolescents with excess weight and/or high blood pressure. Pediatr Nephrol. 2023;38(12):4069–82.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Soliman EZ, Prineas RJ. Antihypertensive therapies and left ventricular hypertrophy. Curr Hypertens Reports. 2017. https://doi.org/10.1007/s11906-017-0777-3.

    Article  Google Scholar 

  87. Deng Y, Liu W, Yang X, Guo Z, Zhang J, Huang R, Yang X, Yu C, Yu J, Cai J. Intensive blood pressure lowering improves left ventricular hypertrophy in older patients with hypertension: the STEP trial. Hypertension. 2023;80(9):1834–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Cuspidi.

Ethics declarations

Funding

None

Data Availability Statement

Non applicabile, the paper is a review.

Competing Interests

All authors disclose that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Author Contributions

All authors contributed to the manuscript. CC and GG had the idea for the article, AD performed the literature search and prepared figures and tables, and CC drafted the manuscript and GG; AD and GM critically revised the work. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuspidi, C., Faggiano, A., Mancia, G. et al. Echocardiographic Phenotypes of Subclinical Organ Damage: Clinical and Prognostic Value in the General Population. Findings from the Pamela Study. High Blood Press Cardiovasc Prev 30, 497–511 (2023). https://doi.org/10.1007/s40292-023-00610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-023-00610-4

Keywords

Navigation