Skip to main content
Log in

Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Large conductive arteries undergo to structural modifications by aging, eventually leading to increased vascular stiffness. As consequence, cardiovascular hemodynamic changes by increasing central blood pressure which may be also associated to the remodelling of peripheral resistance arteries that contribute to increase further the central vascular stiffness and blood pressure. These modifications resemble the ones that has been shown in essential hypertension, thus a condition of “early vascular aging” has been described in hypertensive patients. Since hypertension related target organs, particularly the heart, face aortic blood pressure rather than brachial blood pressure, it has been recently suggested that central blood pressure and other parameters of large arteries’ stiffness, including pulse wave velocity (PWV), may better correlate with subclinical organ damage and might be useful to assess the cardiovascular risk of patients beyond the traditional risk factors. Different devices have been validated to measure central blood pressure and PWV, and are currently available for clinical use. The increasing application of these tools in clinical practice could improve the management of hypertensive patients by better defining the cardiovascular risk and address the antihypertensive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. https://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts. Accessed on 10 Jan 2020

  2. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed on 10 Jan 2020

  3. Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB, Levy D. Hemodynamic patterns of age-related changes in blood pressure The Framingham Heart Study. Circulation. 1997;96:308–15.

    CAS  PubMed  Google Scholar 

  4. Wang M, Lakatta EG. Central arterial aging. In: Safar M, editor. Handbook of hypertension: arterial stiffness in hypertension. Amsterdam: Elsevier; 2006. p. 137–160.

    Google Scholar 

  5. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises (part I). Circulation. 2003;107:139–46.

    PubMed  Google Scholar 

  6. Fritsch Neves M. Different Aspects of Early Vascular Aging in Hypertension. Curr Hypertens Rev. 2017;13:6–7.

    PubMed  Google Scholar 

  7. Sigrist M, Bungay P, Taal MW, McIntyre CW. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant. 2006;21:707–14.

    PubMed  Google Scholar 

  8. Shanahan CM. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol. 2013;9:661–70.

    CAS  PubMed  Google Scholar 

  9. Alam MU, Kirton JP, Wilkinson FL, Towers E, Sinha S, Rouhi M, et al. Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res. 2009;81:260–8.

    CAS  PubMed  Google Scholar 

  10. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the FraminghamHeart Study. Circulation. 2008;117:605–13.

    PubMed  Google Scholar 

  11. McCarty MF, DiNicolantonio JJ. The molecular biology and pathophysiology of vascular calcification. Postgrad Med. 2014;126:54–64.

    PubMed  Google Scholar 

  12. Bots ML, Grobbee DE. Intima media thickness as a surrogate marker for generalised atherosclerosis. Cardiovasc Drugs Ther. 2002;16:341–51.

    PubMed  Google Scholar 

  13. Nilsson PM. Early vascular aging (EVA): consequences and prevention. Vasc Health Risk Manag. 2008;4:547–52.

    PubMed  PubMed Central  Google Scholar 

  14. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis. 2013;1:1–10. https://doi.org/10.1258/cvd.2012.012016.

    Article  Google Scholar 

  15. Williams B. The aorta and resistant hypertension. J Am Coll Cardiol. 2009;53:452–4.

    PubMed  Google Scholar 

  16. Cecelja M, Chowienczyk P. Molecular mechanisms of arterial stiffening. Pulse. 2016;4:43–8.

    PubMed  PubMed Central  Google Scholar 

  17. Lee HY, Oh BH. Aging and arterial stiffness. Circ J. 2010;74:2257–62.

    PubMed  Google Scholar 

  18. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3–10.

    CAS  PubMed  Google Scholar 

  19. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond). 2007;112(7):375–84.

    CAS  Google Scholar 

  20. Arenas IA, Xu Y, Davidge ST. Age-associated impairment in vasorelaxation to fluid shear stress in the female vasculature is improved by TNF-alpha antagonism. Am J Physiol Heart Circ Physiol. 2006;290:H1259–H12631263.

    CAS  PubMed  Google Scholar 

  21. Mandatori S, Pacella I, Marzolla V, Mammi C, Starace D, Padula F, et al. Altered tregs differentiation and impaired autophagy correlate to atherosclerotic disease. Front Immunol. 2020;11:350.

    PubMed  PubMed Central  Google Scholar 

  22. Paneni F, Costantino S, Cosentino F. Molecular pathways of arterial aging. Clin Sci (Lond). 2015;128:69–79.

    CAS  Google Scholar 

  23. Zicha J, Behuliak M, Pintérová M, Bencze M, Kuneš J, Vaněčková I. The interaction of calcium entry and calcium sensitization in the control of vascular tone and blood pressure of normotensive and hypertensive rats. Physiol Res. 2014;63:S19–S27.

    CAS  PubMed  Google Scholar 

  24. Davidge ST, Hubel CA, McLaughlin MK. Impairment of vascular function is associated with an age-related increase of lipid peroxidation in rats. Am J Physiol Regul Integr Comp Physiol. 1996;271:R1625–R16311631.

    CAS  Google Scholar 

  25. Savoia C, Schiffrin EL. Reduction of C-reactive protein and the use of anti-hypertensives. Vasc Health Risk Manag. 2007;3(6):975–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Masi S, Georgiopoulos G, Chiriacò M, Grassi G, Seravalle G, Savoia C, et al. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovasc Res. 2020;116(2):429–37.

    CAS  PubMed  Google Scholar 

  28. Savoia C, Burger D, Nishigaki N, Montezano A, Touyz RM. Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med. 2011;13:e11.

    PubMed  Google Scholar 

  29. Chugh G, Lokhandwala MF, Asghar M. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 2012;59:1029–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Osako MK, Nakagami H, Shimamura M, Koriyama H, Nakagami F, Shimizu H, et al. Cross-talk of receptor activator of nuclear factor-kappaB ligand signaling with renin–angiotensin system in vascular calcification. Arterioscler Thromb Vasc Biol. 2013;33:1287–96.

    CAS  PubMed  Google Scholar 

  31. Gonzalez GE, Rhaleb NE, D'Ambrosio MA, Nakagawa P, Liu Y, Leung P, et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens. 2015;33:144–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Imanishi M, Tomita S, Ishizawa K, Kihira Y, Ueno M, Izawa-Ishizawa Y, et al. Smooth muscle cell-specific Hif-1alpha deficiency suppresses angiotensin II-induced vascular remodelling in mice. Cardiovasc Res. 2014;102:460–8.

    CAS  PubMed  Google Scholar 

  33. Savoia C, Schiffrin EL. Hypertensive vascular disease in Handbook of Hypertension Future Medicine Ltd 2013, 132–150

  34. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    PubMed  Google Scholar 

  35. Kotsis V, Stabouli S, Karafillis I, Nilsson P. Early vascular aging and the role of central blood pressure. J Hypertens. 2011;29:1847–53.

    CAS  PubMed  Google Scholar 

  36. Mottram PM, Haluska BA, Leano R, Carlier S, Case S, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart. 2005;91:1551–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shorr RI, Somes GW. Can diastolic blood pressure be excessively lowered in the treatment of isolated systolic hypertension? J Clin Hypertens (Greenwich). 2000;2:134–7.

    Google Scholar 

  38. Savoia C, Battistoni A, Calvez V, Cesario V, Montefusco G, Filippini A. Microvascular Alterations in Hypertension and Vascular Aging. Curr Hypertens Rev. 2017;13:16–23.

    CAS  PubMed  Google Scholar 

  39. Savoia C, Sada L, Zezza L, Pucci L, Lauri FM, Befani A, Alonzo A, Volpe M. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int J Hypertens. 2011. https://doi.org/10.4061/2011/281240.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bruno RM, Grassi G, Seravalle G, Savoia C, Rizzoni D, Virdis A. Study group on micro- and macrocirculation of the italian society of hypertension (SIIA) age- and sex-specific reference values for media/lumen ratio in small arteries and relationship with risk factors. Hypertension. 2018;71(6):1193–12.

    CAS  PubMed  Google Scholar 

  41. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–111.

    CAS  PubMed  Google Scholar 

  42. Virdis A, Savoia C, Grassi G, Lembo G, Vecchione C, Seravalle G, et al. Evaluation of microvascular structure in humans: a 'state-of-the-art' document of the working group on macrovascular and microvascular alterations of the italian society of arterial hypertension. J Hypertens. 2014;32(11):2120–9.

    CAS  PubMed  Google Scholar 

  43. Safar ME, Rizzoni D, Blacher J, Muiesan ML, Agabiti-Rosei E. Macro and microvasculature in hypertension: therapeutic aspects. J Hum Hypertens. 2008;22:590–5.

    CAS  PubMed  Google Scholar 

  44. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J. 2006;27:2588–95.

    PubMed  Google Scholar 

  45. McEniery CM, Yasmin Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753.

    PubMed  Google Scholar 

  46. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43:1239–45.

    CAS  PubMed  Google Scholar 

  47. Townsend RR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness. Hypertension. 2015. https://doi.org/10.1161/HYP.0000000000000033.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharman JE, et al. Validation of non-invasive central blood pressure devices: Artery society task force (abridged) consensus statement on protocol standardization. Artery Res. 2017;20:35–433.

    Google Scholar 

  49. Miyashita H. Clinical assessment of central blood pressure. Curr Hypertens Rev. 2012;8:80.

    PubMed  PubMed Central  Google Scholar 

  50. ESH/ESC Task Force for the Management of Arterial Hypertension (2018) ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens 36:2284-230

  51. Mattace-Raso FUS, et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: Establishing normal and reference values. Eur Heart J. 2010;31:2338.

    Google Scholar 

  52. Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21:2046.

    CAS  PubMed  Google Scholar 

  53. Inoue N, Maeda R, Kawakami H, Shokawa T, Yamamoto H, Ito C, et al. Aortic pulse wave velocity predicts cardiovascular mortality in middle-aged and elderly Japanese men. Circ J. 2009;73:549–53.

    PubMed  Google Scholar 

  54. Mattace-Raso FU, van der Cammen TJ, Hofman A, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation. 2006;113:657–63.

    PubMed  Google Scholar 

  55. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664.

    PubMed  Google Scholar 

  56. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–5.

    CAS  PubMed  Google Scholar 

  57. Boutouyrie P, Laurent S, Briet M. Importance of arterial stiffness as cardiovascular risk factor for future development of new type of drugs. Fundam Clin Pharmacol. 2008;22:241–6.

    CAS  PubMed  Google Scholar 

  58. Humphrey JD, et al. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ Res. 2017;118:379–81.

    Google Scholar 

  59. Fukuhara M, Matsumura K, Ansai T, Takata Y, Sonoki K, Akifusa S, et al. Prediction of cognitive function by arterial stiffness in the very elderly. Circ J. 2006;70:756–61.

    PubMed  Google Scholar 

  60. Fesler P, Safar ME, du Cailar G, Ribstein J, Mimran A. Pulse pressure is an independent determinant of renal function decline during treatment of essential hypertension. J Hypertens. 2007;25:1915–20.

    CAS  PubMed  Google Scholar 

  61. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–7.

    PubMed  Google Scholar 

  62. Cheng H-M. 2019 Consensus of the Taiwan Hypertension Society and Taiwan Society of Cardiology on the Clinical Application of Central Blood Pressure in the Management of Hypertension. Acta Cardiol Sin. 2019;35:234–43.

    PubMed  PubMed Central  Google Scholar 

  63. McEniery CM, Yasmin McDonnell B, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo- Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–2.

    CAS  PubMed  Google Scholar 

  64. Camacho F, Avolio A, Lovell NH. Estimation of pressure pulse amplification between aorta and brachial artery using stepwise multiple regression models. Physiol Meas. 2004;25:879–89.

    CAS  PubMed  Google Scholar 

  65. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122–3.

    CAS  PubMed  Google Scholar 

  66. Roman MJ, Franklin SS, McEniery CM, Wilkinson IB, Cockcroft JR. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25.

    PubMed  PubMed Central  Google Scholar 

  67. Cheng HM, Wang KL, Chen YH, et al. Estimation of central systolic blood pressure using an oscillometric blood pressure monitor. Hypertens Res. 2010;33:592–9.

    PubMed  Google Scholar 

  68. Weber T, Wassertheurer S, Rammer M, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    CAS  PubMed  Google Scholar 

  69. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67:183.

    CAS  PubMed  Google Scholar 

  70. Hashimoto J, Imai Y, O'Rourke MF. Monitoring of antihypertensive therapy for reduction in left ventricular mass. Am J Hypertens. 2007;20:1229–333.

    CAS  PubMed  Google Scholar 

  71. Kampus P, Serg M, Kals J, Zagura M, Muda P, Karu K, et al. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension. 2001;57:1122–8.

    Google Scholar 

  72. Boutouyrie P, Bussy C, Hayoz D, Hengstler J, Dartois N, Laloux B, et al. Local pulse pressure and regression of arterial wall hypertrophy during long-term antihypertensive treatment. Circulation. 2000;101:2601–6.

    CAS  PubMed  Google Scholar 

  73. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    PubMed  Google Scholar 

  74. Mitchell GF, Hwang SJ, Vasan RD, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events The Framingham Heart Study. Circulation. 2010;121:505–11.

    PubMed  PubMed Central  Google Scholar 

  75. Mitchell GF, Hwang S-J, Larson MG, Hamburg NM, Benjamin EJ, Vasan RS, et al. Transfer function-derived central pressure and cardiovascular disease events: the Framingham Heart Study. J Hypertens. 2016;34:1528–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, et al. Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens. 2011;29:454–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 2013;62:1780–7.

    PubMed  Google Scholar 

  78. Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.

    PubMed  PubMed Central  Google Scholar 

  79. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237–8.

    CAS  PubMed  Google Scholar 

  80. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension. 2005;45:980–5.

    CAS  PubMed  Google Scholar 

  81. Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Aortic Blood Pressure and Survival Study Group. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51:848–5.

    CAS  PubMed  Google Scholar 

  82. Balkestein EJ, Aggel-Leijssen DP, van Baak MA, Struijker-Boudier HA, Van Bortel LM. The effect of weight loss with or without exercise training on large artery compliance in healthy obese men. J Hypertens. 1999;17:1831–5.

    CAS  PubMed  Google Scholar 

  83. Avolio AP, Clyde KM, Beard TC, Cooke HM, Ho KK, O’Rourke MF. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6:166–9.

    CAS  PubMed  Google Scholar 

  84. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–5.

    CAS  PubMed  Google Scholar 

  85. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo- Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A multicentre randomised controlled trial. Lancet. 2005;366:895–6.

    PubMed  Google Scholar 

  86. Matsui Y, Eguchi K, O’Rourke MF, Ishikawa J, Miyashita H, Shimada K, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009;54:716–23.

    CAS  PubMed  Google Scholar 

  87. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51:432–9.

    CAS  PubMed  Google Scholar 

  88. Smulyan H, Mookherjee S, Safar ME. The two faces of hypertension: Role of aortic stiffness. J Am Soc Hypertens. 2016;10:175–83.

    PubMed  Google Scholar 

  89. Zappe DH, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension. Hypertension. 2017;69:411.

    PubMed  Google Scholar 

  90. Geraci G, et al. Inflammation and aortic pulse wave velocity: A multicenter longitudinal study in patients with inflammatory bowel disease. J Am Heart Assoc. 2019;8:1–9.

    Google Scholar 

  91. Bou AT, et al. Markers of arterial stiffness in a sample of Lebanese subjects with Grade I essential hypertension. SAGE Open Med. 2017. https://doi.org/10.1177/205031211771288.

    Article  Google Scholar 

  92. Harvey AP, et al. Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sci. 2017;179:110–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Camici GG, Shi Y, Cosentino F, Francia P, Lüscher TF. Anti-aging medicine: molecular basis for endothelial cell-targeted strategies. A mini-review Gerontology. 2011;57:101–8.

    CAS  PubMed  Google Scholar 

  94. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, et al. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol. 2002;39:1020–5.

    CAS  PubMed  Google Scholar 

  95. Savoia C. Vascular Remodeling in Textbook of Vascular Medicine. Springer. 2019, 193-201.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All author have contributed to the paper.

Corresponding author

Correspondence to Carmine Savoia.

Ethics declarations

Conflicts of interest

All authors have no COI to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistoni, A., Michielon, A., Marino, G. et al. Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment. High Blood Press Cardiovasc Prev 27, 299–308 (2020). https://doi.org/10.1007/s40292-020-00395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-020-00395-w

Keywords

Navigation