Skip to main content
Log in

A Review of the Current FDA-Approved Antibody-Drug Conjugates: Landmark Clinical Trials and Indications

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Despite considerable treatment progress, cancer remains among the leading causes of death worldwide. Antibody-drug conjugates (ADCs), a rapidly growing class of systemic therapy, show promise by combining the properties of conventional chemotherapy and targeted therapy. Antibody-drug conjugates have been shown to be more efficacious than traditional chemotherapy. To date, there are 13 ADCs approved by the United States Food and Drug Administration (FDA) for treating various hematological and solid organ cancers. There are several new promising ADCs that are being developed and are in clinical trials. This review provides an overview of the current FDA-approved ADCs, the landmark clinical trials that led to their approval, the common toxicities seen in the landmark trials, the challenges associated with ADCs, and the potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Key Cancer Data and Key Figures on IARC: 2020–2021. International agency for research on cancer. https://www.iarc.who.int/biennial-report-2020-2021web/. Accessed.

  2. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53. https://doi.org/10.1158/0008-5472.CAN-07-6611. (in eng).

    Article  PubMed  CAS  Google Scholar 

  3. Pahl A, Lutz C, Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov Today Technol. 2018;30:85–9. https://doi.org/10.1016/j.ddtec.2018.08.005. (in eng).

    Article  PubMed  Google Scholar 

  4. Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107. https://doi.org/10.1021/ar700108g. (in eng).

    Article  PubMed  CAS  Google Scholar 

  5. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80. https://doi.org/10.1038/nrc2394. (in eng).

    Article  PubMed  CAS  Google Scholar 

  6. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332(6162):323–7. https://doi.org/10.1038/332323a0. (in eng).

    Article  PubMed  CAS  Google Scholar 

  7. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582. (in eng).

    Article  PubMed  CAS  Google Scholar 

  8. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–81. https://doi.org/10.1016/j.drudis.2013.11.004. (in eng).

    Article  PubMed  CAS  Google Scholar 

  9. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65. https://doi.org/10.1182/blood-2003-01-0039. (in eng).

    Article  PubMed  CAS  Google Scholar 

  10. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. https://doi.org/10.1200/JCO.2011.38.0410. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6. https://doi.org/10.1200/JCO.2011.38.0402. (in eng).

    Article  PubMed  CAS  Google Scholar 

  12. Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet. 2015;385(9980):1853–62. https://doi.org/10.1016/S0140-6736(15)60165-9. (in eng).

    Article  PubMed  CAS  Google Scholar 

  13. Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, Phase 3, multicentre trial. Lancet. 2017;390(10094):555–66. https://doi.org/10.1016/S0140-6736(17)31266-7. (in eng).

    Article  PubMed  CAS  Google Scholar 

  14. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44. https://doi.org/10.1056/NEJMoa1708984. (in eng).

    Article  PubMed  CAS  Google Scholar 

  15. Horwitz S, O’Connor OA, Pro B, Illidge T, Fanale M, Advani R, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393(10168):229–40. https://doi.org/10.1016/S0140-6736(18)32984-2. (in eng).

    Article  PubMed  CAS  Google Scholar 

  16. Castellino SM, Pei Q, Parsons SK, Hodgson D, McCarten K, Horton T, et al. Brentuximab vedotin with chemotherapy in pediatric high-risk Hodgkin’s lymphoma. N Engl J Med. 2022;387(18):1649–60. https://doi.org/10.1056/NEJMoa2206660. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Polson AG, Yu SF, Elkins K, Zheng B, Clark S, Ingle GS, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007;110(2):616–23. https://doi.org/10.1182/blood-2007-01-066704. (in eng).

    Article  PubMed  CAS  Google Scholar 

  18. Sehn LH, Hertzberg M, Opat S, Herrera AF, Assouline S, Flowers CR, et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: survival update and new extension cohort data. Blood Adv. 2022;6(2):533–43. https://doi.org/10.1182/bloodadvances.2021005794. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sehn LH, Herrera AF, Flowers CR, Kamdar MK, McMillan A, Hertzberg M, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(2):155–65. https://doi.org/10.1200/JCO.19.00172. (in eng).

    Article  PubMed  CAS  Google Scholar 

  20. Zammarchi F, Corbett S, Adams L, Tyrer PC, Kiakos K, Janghra N, et al. ADCT-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies. Blood. 2018;131(10):1094–105. https://doi.org/10.1182/blood-2017-10-813493. (in eng).

    Article  PubMed  CAS  Google Scholar 

  21. Caimi PF, Ai W, Alderuccio JP, Ardeshna KM, Hamadani M, Hess B, et al. "Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021;22(6):790–800. https://doi.org/10.1016/S1470-2045(21)00139-X. (in eng).

    Article  PubMed  CAS  Google Scholar 

  22. DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14. https://doi.org/10.1182/blood-2003-07-2466. (in eng).

    Article  PubMed  CAS  Google Scholar 

  23. Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res. 2011;17(20):6417–27. https://doi.org/10.1158/1078-0432.CCR-11-0486. (in eng).

    Article  PubMed  CAS  Google Scholar 

  24. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53. https://doi.org/10.1056/NEJMoa1509277. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001; 7(6): 1490-6. [Online]. https://www.ncbi.nlm.nih.gov/pubmed/11410481. (in eng)

  26. Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. https://doi.org/10.1182/blood-2013-01-466706. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lambert J, Pautas C, Terré C, Raffoux E, Turlure P, Caillot D, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9. https://doi.org/10.3324/haematol.2018.188888. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 Trial. J Clin Oncol. 2016;34(9):972–9. https://doi.org/10.1200/JCO.2015.64.0060. (in eng).

    Article  PubMed  CAS  Google Scholar 

  29. Taksin AL, Legrand O, Raffoux E, de Revel T, Thomas X, Contentin N, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71. https://doi.org/10.1038/sj.leu.2404434. (in eng).

    Article  PubMed  CAS  Google Scholar 

  30. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405. https://doi.org/10.1158/1078-0432.CCR-11-0487. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Robak T, le Coutre PD, et al. Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial. J Hematol Oncol. 2021;14(1):35. https://doi.org/10.1186/s13045-020-01004-y. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–38. https://doi.org/10.1182/blood-2013-10-535088. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–21. https://doi.org/10.1016/S1470-2045(19)30788-0. (in eng).

    Article  PubMed  CAS  Google Scholar 

  34. GSK provides update on DREAMM-3 phase III trial for Blenrep in relapsed/refractory multiple myeloma, ed. https://www.gsk.com/en-gb/media/press-releases/gsk-provides-update-on-dreamm-3-phase-iii-trial-for-blenrep/, 7 Nov 2022.

  35. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90. https://doi.org/10.1158/0008-5472.CAN-08-1776. (in eng).

    Article  PubMed  CAS  Google Scholar 

  36. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28. https://doi.org/10.1056/NEJMoa1814017. (in eng).

    Article  Google Scholar 

  38. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I Inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108. https://doi.org/10.1158/1078-0432.CCR-15-2822. (in eng).

    Article  PubMed  CAS  Google Scholar 

  39. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated her2-positive breast cancer. N Engl J Med. 2020;382(7):610–21. https://doi.org/10.1056/NEJMoa1914510. (in eng).

    Article  PubMed  CAS  Google Scholar 

  40. Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143–54. https://doi.org/10.1056/NEJMoa2115022. (in eng).

    Article  PubMed  Google Scholar 

  41. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastuzumab deruxtecan in previously treated her2-low advanced breast cancer. N Engl J Med. 2022;387(1):9–20. https://doi.org/10.1056/NEJMoa2203690. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Correction: Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2020;11(10):942. https://doi.org/10.18632/oncotarget.27512. (in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51. https://doi.org/10.1056/NEJMoa1814213. (in eng).

    Article  PubMed  CAS  Google Scholar 

  44. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41. https://doi.org/10.1056/NEJMoa2028485. (in eng).

    Article  PubMed  CAS  Google Scholar 

  45. Rugo H, Bardia A, Marme F, Cortes J. Primary results from TROPiCS-02: A randomized Phase 3 study of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) in patients (Pts) with hormone receptor–positive/HER2-negative (HR+/HER2-) advanced breast cancer, ed. In: 2022 ASCO annual meeting/Meeting abstract, 2022.

  46. Rugo H, Bardia A, Marme F, Cortes J. LBA76 - Overall survival (OS) results from the phase III TROPiCS-02 study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with HR+/HER2- metastatic breast cancer (mBC). Ann Oncol. 2022;33(suppl_7):S808–69. https://doi.org/10.1016/annonc/annonc1089.

    Article  Google Scholar 

  47. "PADCEV Prescribing Information," ed. Northbrook, IL: Astellas, Inc, 2019.

  48. Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76(10):3003–13. https://doi.org/10.1158/0008-5472.CAN-15-1313. (in eng).

    Article  PubMed  CAS  Google Scholar 

  49. Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37(29):2592–600. https://doi.org/10.1200/JCO.19.01140. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Durán I, Lee JL, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125–35. https://doi.org/10.1056/NEJMoa2035807. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hoimes CJ, Flaig TW, Milowsky MI, Friedlander TW, Bilen MA, Gupta S, et al. Enfortumab vedotin plus pembrolizumab in previously untreated advanced urothelial cancer. J Clin Oncol. 2023;41(1):22–31. https://doi.org/10.1200/JCO.22.01643. (in eng).

    Article  PubMed  CAS  Google Scholar 

  52. O’Donnell PH, Milowsky MI, Petrylak DP, Hoimes CJ, Flaig TW, Mar N, et al. Enfortumab vedotin with or without pembrolizumab in cisplatin-ineligible patients with previously untreated locally advanced or metastatic urothelial cancer. J Clin Oncol. 2023;41(25):4107–17. https://doi.org/10.1200/JCO.22.02887. (in eng).

    Article  PubMed  CAS  Google Scholar 

  53. Tagawa ST, Balar AV, Petrylak DP, Kalebasty AR, Loriot Y, Fléchon A, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–85. https://doi.org/10.1200/JCO.20.03489. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Breij EC, de Goeij BE, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–26. https://doi.org/10.1158/0008-5472.CAN-13-2440. (in eng).

    Article  PubMed  CAS  Google Scholar 

  55. Coleman RL, Lorusso D, Gennigens C, González-Martín A, Randall L, Cibula D, et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(5):609–19. https://doi.org/10.1016/S1470-2045(21)00056-5. (in eng).

    Article  PubMed  CAS  Google Scholar 

  56. Ab O, Whiteman KR, Bartle LM, Sun X, Singh R, Tavares D, et al. "IMGN853, a FOLATE RECEPTOR-α (FRα)-Targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against frα-expressing tumors. Mol Cancer Ther. 2015;14(7):1605–13. https://doi.org/10.1158/1535-7163.MCT-14-1095. (in eng).

    Article  PubMed  CAS  Google Scholar 

  57. Matulonis AU, Oaknin A, Pignata S, Denys H. Mirvetuximab soravtansine (MIRV) in patients with platinum-resistant ovarian cancer with high folate receptor alpha (FRα) expression: Characterization of antitumor activity in the SORAYA study," ed. In: ASCO annual meeting, 2022. https://doi.org/10.1200/JCO.2022.40.16_suppl.5512?role=tab.

  58. Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382(25):2419–30. https://doi.org/10.1056/NEJMoa2004413. (in eng).

    Article  PubMed  CAS  Google Scholar 

  59. Goto K, Goto Y, Kubo T, Ninomiya K, Kim SW, Planchard D, et al. Trastuzumab deruxtecan in patients with. J Clin Oncol. 2023. https://doi.org/10.1200/JCO.23.01361. (in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wahab A, Rafae A, Mushtaq K, Masood A, Ehsan H, Khakwani M, et al. Ocular toxicity of belantamab mafodotin, an oncological perspective of management in relapsed and refractory multiple myeloma. Front Oncol. 2021;11: 678634. https://doi.org/10.3389/fonc.2021.678634. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Abuhelwa Z, Alloghbi A, Alqahtani A, Nagasaka M. Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: a systematic review. Drugs. 2022;82(9):979–87. https://doi.org/10.1007/s40265-022-01736-w. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kumagai K, Aida T, Tsuchiya Y, Kishino Y, Kai K, Mori K. Interstitial pneumonitis related to trastuzumab deruxtecan, a human epidermal growth factor receptor 2-targeting Ab-drug conjugate, in monkeys. Cancer Sci. 2020;111(12):4636–45. https://doi.org/10.1111/cas.14686. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wei C, Zhang G, Clark T, Barletta F, Tumey LN, Rago B, et al. Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem. 2016;88(9):4979–86. https://doi.org/10.1021/acs.analchem.6b00976. (in eng).

    Article  PubMed  CAS  Google Scholar 

  64. Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16(4):681–93. https://doi.org/10.1158/1535-7163.MCT-16-0658. (in eng).

    Article  PubMed  CAS  Google Scholar 

  65. Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–63. https://doi.org/10.1158/1535-7163.MCT-14-0862. (in eng).

    Article  PubMed  CAS  Google Scholar 

  66. Kim SB, Wildiers H, Krop IE, Smitt M, Yu R, Lysbet de Haas S, et al. Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer. Int J Cancer. 2016;139(10):2336–42. https://doi.org/10.1002/ijc.30276. (in eng).

    Article  PubMed  CAS  Google Scholar 

  67. Nicolò E, Boscolo Bielo L, Curigliano G, Tarantino P. "The HER2-low revolution in breast oncology: steps forward and emerging challenges. Ther Adv Med Oncol. 2023;15:17588359231152842. https://doi.org/10.1177/17588359231152842. (in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mosele F, Deluche E, Lusque A, Le Bescond L, Filleron T, Pradat Y, et al. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat Med. 2023;29(8):2110–20. https://doi.org/10.1038/s41591-023-02478-2. (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Durbin KR, Phipps C, Liao X. Mechanistic modeling of antibody-drug conjugate internalization at the cellular level reveals inefficient processing steps. Mol Cancer Ther. 2018;17(6):1341–51. https://doi.org/10.1158/1535-7163.MCT-17-0672. (in eng).

    Article  PubMed  CAS  Google Scholar 

  70. Shastry M, Gupta A, Chandarlapaty S, Young M, Powles T, Hamilton E. Rise of antibody-drug conjugates: the present and future. Am Soc Clin Oncol Educ Book. 2023;43: e390094. https://doi.org/10.1200/EDBK_390094. (in eng).

    Article  PubMed  Google Scholar 

  71. Abelman RO, Spring L, Fell GG, Ryan P, Vidula N, Medford AJ et al. Sequential use of antibody-drug conjugate after antibody-drug conjugate for patients with metastatic breast cancer: ADC after ADC (A3) study. ed. In: ASCO Annual Meeting I, 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghana Kesireddy.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of Interest/Competing Interests

All the authors, Meghana Kesireddy, Srikanth Reddy Kothapalli, Sai Giridhar Gundepalli, and Samia Asif, declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics Approval

Not applicable for this review article.

Consent to Participate

Not applicable for this review article.

Consent for Publication

Not applicable for this review article.

Availability of Data and Material

No datasets were generated or analyzed for this paper.

Code Availability

Not applicable for this review article.

Authors' Contribution

MK: conceptualization, writing-original draft, writing- review & editing; SRK and SGG: writing- original draft; SA: writing- review& editing, supervision.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesireddy, M., Kothapalli, S.R., Gundepalli, S.G. et al. A Review of the Current FDA-Approved Antibody-Drug Conjugates: Landmark Clinical Trials and Indications. Pharm Med 38, 39–54 (2024). https://doi.org/10.1007/s40290-023-00505-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-023-00505-8

Navigation