Skip to main content
Log in

Optimising the Early-Stage Rehabilitation Process Post-ACL Reconstruction

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Outcomes following anterior cruciate ligament reconstruction (ACLR) need improving, with poor return-to-sport rates and a high risk of secondary re-injury. There is a need to improve rehabilitation strategies post-ACLR, if we can support enhanced patient outcomes. This paper discusses how to optimise the early-stage rehabilitation process post-ACLR. Early-stage rehabilitation is the vital foundation on which successful rehabilitation post-ACLR can occur. Without high-quality early-stage (and pre-operative) rehabilitation, patients often do not overcome major aspects of dysfunction, which limits knee function and the ability to transition through subsequent stages of rehabilitation optimally. We highlight six main dimensions during the early stage: (1) pain and swelling; (2) knee joint range of motion; (3) arthrogenic muscle inhibition and muscle strength; (4) movement quality/neuromuscular control during activities of daily living (5) psycho-social-cultural and environmental factors and (6) physical fitness preservation. The six do not share equal importance and the extent of time commitment devoted to each will depend on the individual patient. The paper provides recommendations on how to implement these into practice, discussing training planning and programming, and suggests specific screening to monitor work and when the athlete can progress to the next stage (e.g. mid-stage rehabilitation entry criteria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ardern CL, Webster KE, Taylor NF, et al. Return to pre-injury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39:538–43.

    Article  PubMed  Google Scholar 

  2. Della Villa F, Hägglund M, Della Villa S, et al. High rate of second ACL injury following ACL reconstruction in male professional footballers: an updated longitudinal analysis from 118 players in the UEFA Elite Club Injury Study. Br J Sports Med. 2021;55:1350–7.

    Article  PubMed  Google Scholar 

  3. Lai CC, Ardern CL, Feller JA, Webster KE. Eighty-three per cent of elite athletes return to preinjury sport after anterior cruciate ligament reconstruction: a systematic review with meta-analysis of return to sport rates, graft rupture rates and performance outcomes. Br J Sports Med. 2018;52(2):128–38.

    Article  PubMed  Google Scholar 

  4. Waldén M, Hägglund M, Magnusson H, Ekstrand J. ACL injuries in men’s professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50(12):744–50.

    Article  PubMed  Google Scholar 

  5. Desai N, Björnsson H, Musahl V, et al. Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):1009–23.

    Article  PubMed  Google Scholar 

  6. Salmon LJ, Heath E, Akrawi H, et al. 20-Year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med. 2018;46(3):531–43.

    Article  PubMed  Google Scholar 

  7. Ardern CL, Taylor NF, Feller JA, et al. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48:1543–52.

    Article  PubMed  Google Scholar 

  8. Wiggins AJ, Granhi RK, Schneider DK, et al. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50:804–8.

    Article  PubMed  Google Scholar 

  10. Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32.

    Article  PubMed  Google Scholar 

  12. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, et al. Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee. 2014;21(3):731–5.

    Article  CAS  PubMed  Google Scholar 

  13. Arundale AJH, Silvers-Granelli HJ, Snyder-Mackler L. Career length and injury incidence after anterior cruciate ligament reconstruction in major league soccer players. Orthop J Sports Med. 2018;6(1):232. https://doi.org/10.1177/2325967117750825.

    Article  Google Scholar 

  14. Barth KA, Lawton CD, Touhey DC, et al. The negative impact of anterior cruciate ligament reconstruction in professional male footballers. Knee. 2019;26:142–8.

    Article  PubMed  Google Scholar 

  15. Niederer D, Engeroff T, Wilke J, et al. Return to play, performance, and career duration after anterior cruciate ligament rupture: a case-control study in the five biggest football nations in Europe. Scand J Med Sci Sports. 2018;28:2226–33.

    Article  PubMed  Google Scholar 

  16. Lai CCH, Feller JA, Webster KE. Fifteen-year audit of anterior cruciate ligament reconstructions in the Australian Football League from 1999 to 2013: return to play and subsequent ACL injury. Am J Sports Med. 2018;46(14):3353–60.

    Article  PubMed  Google Scholar 

  17. Fältström A, Kvist J, Hägglund M. High risk of new knee injuries in female soccer players after primary anterior cruciate ligament reconstruction at 5- to 10-year follow-up. Am J Sports Med. 2021;49(13):3479–87.

    Article  PubMed  Google Scholar 

  18. Culvenor AG, Patterson BE, Guermazi A, et al. Accelerated return to sport after anterior cruciate ligament reconstruction and early knee osteoarthritis features at 1 year: an exploratory study. Phys Med Rehabil. 2018;10(4):349–56.

    Google Scholar 

  19. Patterson B, Culvenor AG, Barton CJ, et al. Poor functional performance 1 year after ACL reconstruction increases the risk of early osteoarthritis progression. Br J Sports Med. 2020;54:546–55.

    Article  PubMed  Google Scholar 

  20. Andrade R, Pereira R, van Cingel R, Staal JB, Espregueira-Mendes J. How should clinicians rehabilitate patients after ACL reconstruction? A systematic review of clinical practice guidelines (CPGs) with a focus on quality appraisal (AGREE II). Br J Sports Med. 2020;54(9):512–9.

    Article  PubMed  Google Scholar 

  21. Hanson DW, Finch CF, Allegrante JP, et al. Closing the gap between injury prevention research and community safety promotion practice: revisiting the public health model. Public Health Rep. 2012;127(2):147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fausett WA, Reid DA, Larmer PJ. Current perspectives of New Zealand physiotherapists on rehabilitation and return to sport following anterior cruciate ligament reconstruction: a survey. Phys Ther Sport. 2022;53:166–72.

    Article  PubMed  Google Scholar 

  23. Finch CF. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9:3–9.

    Article  PubMed  Google Scholar 

  24. Timpka T, Ekstrand J, Svanström L. From sports injury prevention to safety promotion in sports. Sports Med. 2006;36:733–45.

    Article  PubMed  Google Scholar 

  25. Verhagen E. If athletes will not adopt preventive measures, effective measures must adopt athletes. Curr Sports Med Rep. 2012;11:7–8.

    Article  PubMed  Google Scholar 

  26. Verhagen E, Voogt N, Bruinsma A, Finch CF. A knowledge transfer scheme to bridge the gap between science and practice: an integration of existing research frameworks into a tool for practice. Br J Sports Med. 2014;48:698–701.

    Article  PubMed  Google Scholar 

  27. Bien DP, Dubuque TJ. Considerations for late stage ACL rehabilitation and return to sport to limit re-injury risk and maximize athletic performance. Int J Sports Phys Ther. 2015;10(2):256–71.

    PubMed  PubMed Central  Google Scholar 

  28. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med. 2019;49(7):1043–58.

    Article  PubMed  Google Scholar 

  29. Buckthorpe M, Della VF. Optimising the “mid-stage” training and testing process after ACL reconstruction. Sports Med. 2020;50(4):657–78.

    Article  PubMed  Google Scholar 

  30. Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. Sports Med. 2017;47(8):1487–500.

    Article  PubMed  Google Scholar 

  31. Hannon JP, Wang-Price S, Goto S, et al. Twelve-week quadriceps strength as a predictor of quadriceps strength at time of return to sport testing following bone-patellar tendon-bone autograft anterior cruciate ligament reconstruction. Int J Sports Phys Ther. 2021;16(3):681–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Labanca L, Laudani L, Menotti F, et al. Asymmetrical lower extremity loading early after anterior cruciate ligament reconstruction is a significant predictor of asymmetrical loading at the time of return to sport. Am J Phys Med Rehabil. 2016;95(4):248–55.

    Article  PubMed  Google Scholar 

  33. Noll S, Garrison JC, Bothwell J, Conway JE. Knee Extension range of motion at 4 weeks is related to knee extension loss at 12 weeks after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2015;3(5):2325967115583632. https://doi.org/10.1177/2325967115583632.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sigward SM, Lin P, Pratt K. Knee loading asymmetries during gait and running in early rehabilitation following anterior cruciate ligament reconstruction: a longitudinal study. Clin Biomech. 2016;32:249–54.

    Article  Google Scholar 

  35. de Jong SN, van Caspel DR, van Haeff MJ, et al. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007;23:21–8.

    PubMed  Google Scholar 

  36. Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med. 2009;43(5):371–6.

    Article  CAS  PubMed  Google Scholar 

  37. Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA. A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2010;40(11):705–21.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction: the effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991;19(4):332–6.

    Article  CAS  PubMed  Google Scholar 

  39. Clark NC. The role of physiotherapy in rehabilitation of soft tissue injuries of the knee. Orthop Trauma. 2015;29(1):48–56.

    Article  Google Scholar 

  40. Månsson O, Kartus J, Sernert N. Pre-operative factors predicting good outcome in terms of health-related quality of life after ACL reconstruction. Scand J Med Sci Sports. 2013;23(1):15–22.

    Article  PubMed  Google Scholar 

  41. McHugh MP, Tyler TF, Gleim GW, Nicholas SJ. Preoperative indicators of motion loss and weakness following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1998;27:407–11.

    Article  CAS  PubMed  Google Scholar 

  42. Lepley LK, Palmieri-Smith RM. Pre-operative quadriceps activation is related to post-operative activation, not strength, in patient’s post-ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016;24:236–46.

    Article  PubMed  Google Scholar 

  43. de Valk EJ, Moen MH, Winters M, et al. Preoperative patient and injury factors of successful rehabilitation after anterior cruciate ligament reconstruction with single-bundle techniques. Arthrosc. 2013;29:1879–95.

    Article  Google Scholar 

  44. Failla MJ, Logerstedt DS, Grindem H, et al. Does extended preoperative rehabilitation influence outcomes 2 years after ACL reconstruction? A comparative effectiveness study between the MOON and Delaware-Oslo ACL cohorts. Am J Sports Med. 2016;44(10):2608–14.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grindem H, Granen LP, Risberg MA, et al. How does combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction two years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med. 2015;49:385–9.

    Article  CAS  PubMed  Google Scholar 

  46. Shaarani SR, O’Hare C, Quinn A, et al. Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41:2117–27.

    Article  PubMed  Google Scholar 

  47. Eastlack ME, Axe MJ, Snyder-Mackler L. Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc. 1999;31(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  48. Thoma LM, Grindem H, Logerstedt D, et al. Coper classification early after anterior cruciate ligament rupture changes with progressive neuromuscular and strength training and is associated with 2-year success: The Delaware-Oslo ACL Cohort Study. Am J Sports Med. 2019;47(4):807–14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Buckthorpe M, Frizziero A, Roi GS. Update on functional recovery process for the injured athlete: return to sport continuum redefined. Br J Sports Med. 2019;53(5):265–7.

    Article  PubMed  Google Scholar 

  50. Lattermann C, Jacobs CA, Proffitt Bunnell M, et al. A multicenter study of early anti-inflammatory treatment in patients with acute anterior cruciate Ligament tear. Am J Sports Med. 2017;45(2):325–33.

    Article  PubMed  Google Scholar 

  51. Baxendale RH, Ferrell WR. Disturbances of proprioception at the human knee resulting from acute joint distension. J Physiol. 1987;392:60.

    Google Scholar 

  52. Matre D, Arendt-Neilsen L, Knardahl S. Effects of localization and intensity of experimental muscle pain on ankle joint proprioception. Eur J Pain. 2002;6(4):245–60.

    Article  PubMed  Google Scholar 

  53. Lepley AS, Lepley LK. Mechanisms of arthrogenic muscle inhibition. J Sport Rehabil. 2021;31(6):707–16.

    Article  PubMed  Google Scholar 

  54. Norte G, Rush J, Sherman D. Arthrogenic muscle inhibition: best evidence, mechanisms, and theory for treating the unseen in clinical rehabilitation. J Sport Rehabil. 2021;31(6):717–35.

    Article  PubMed  Google Scholar 

  55. Hurley M. The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997;2:11–7.

    Article  PubMed  Google Scholar 

  56. Bleakley C, McDonough S, MacAuley D. The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials. Am J Sports Med. 2004;32(1):251–61.

    Article  PubMed  Google Scholar 

  57. Kotsifaki R, Korakakis V, King E, et al. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. Br J Sports Med. 2023;57:500–14.

    Article  PubMed  Google Scholar 

  58. Bleakley CM, Glasgow P, MacAuley DC. PRICE needs updating, should we call the POLICE? Br J Sports Med. 2012;46:220–1.

    Article  CAS  PubMed  Google Scholar 

  59. Raynor MC, Pietrobon R, Guller U, Higgins LD. Cryotherapy after ACL reconstruction: a meta-analysis. J Knee Surg. 2005;18(2):123–9. https://doi.org/10.1055/s-0030-1248169.

    Article  PubMed  Google Scholar 

  60. Bahl V, Goyal A, Jain V, Joshi D, Chaudhary D. Effect of haemarthrosis on the rehabilitation of anterior cruciate ligament reconstruction: single bundle versus double bundle. J Orthop Surg Res. 2013;8:5. https://doi.org/10.1186/1749-799X-8-5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Calvo R, Figueroa D, Anastasiadis Z, et al. Septic arthritis in ACL reconstruction surgery with hamstring autografts: eleven years of experience. Knee. 2014;21(3):717–20.

    Article  PubMed  Google Scholar 

  62. Sonnery-Cottet B, Archbold P, Zayni R, et al. Prevalence of septic arthritis after anterior cruciate ligament reconstruction among professional athletes. Am J Sports Med. 2011;39(11):2371–6.

    Article  PubMed  Google Scholar 

  63. Keller RA, Moutzouros V, Dines JS, Bush-Joseph CA, Limpisvasti O. Deep Venous Thrombosis prophylaxis in anterior cruciate ligament reconstructive surgery: what is the current state of practice? Sports Health. 2018;10(2):156–9.

    Article  PubMed  Google Scholar 

  64. Ekdahl V, Stålman A, Forssblad M, et al. There is no general use of thromboprophylaxis and prolonged antibiotic prophylaxis in anterior cruciate ligament reconstruction: a nation-wide survey of ACL surgeons in Sweden. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2535–42.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Esculier JF, Bouyer LJ, Dubois B, et al. Is combining gait retraining or an exercise programme with education better than education alone in treating runners with patellofemoral pain? A randomised clinical trial. Br J Sports Med. 2018;52(10):659–66.

    Article  PubMed  Google Scholar 

  66. Rio E, van Ark M, Docking S, et al. Isometric contractions are more analgesic than isotonic contractions for patellar tendon pain: an in-season randomized clinical Ttial. Clin J Sport Med. 2017;27(3):253–9.

    Article  PubMed  Google Scholar 

  67. Silbernagel KG, Crossley KM. A proposed return-to-sport program for patients with midportion Achilles tendinopathy: rationale and implementation. J Orthop Sports Phys Ther. 2015;45(11):876–86.

    Article  PubMed  Google Scholar 

  68. Silbernagel KG, Thomeé R, Eriksson BI, Karlsson J. Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy: a randomized controlled study. Am J Sports Med. 2007;35(6):897–906.

    Article  PubMed  Google Scholar 

  69. Sturgill LP, Synder-Mackler L, Manal TJ, Axe MJ. Interrater reliability of a clinical scale to assess knee joint effusion. J Orthop Sports Phys Ther. 2009;39(12):845–9.

    Article  PubMed  Google Scholar 

  70. Jakobsen T, Christensen M, Christensen S, et al. Reliability of knee joint range of motion and circumference measurements after total knee arthroplasty: does tester experience matter. Physiother Res Int. 2010;15:126–34.

    Article  PubMed  Google Scholar 

  71. Adams D, Logerstedt DS, Hunter-Giordano A, et al. Current concepts for anterior cruciate ligament reconstruction: a criterion based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Herrington L, Myer G, Horsley I. Task based rehabilitation protocol for elite athletes following anterior cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport. 2013;14(4):188–98.

    Article  PubMed  Google Scholar 

  73. Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH. Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med. 1992;20(5):499–506.

    Article  CAS  PubMed  Google Scholar 

  74. Shelbourne KD, Gray T. Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med. 2009;37(3):471–80.

    Article  PubMed  Google Scholar 

  75. Marques FDS, Barbosa PHB, Alves PR, et al. Anterior knee pain after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2020;8(10):2325967120961082. https://doi.org/10.1177/2325967120961082.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pinto FG, Thaunat M, Daggett M, et al. Hamstring contracture after ACL reconstruction is associated with an increased risk of cyclops syndrome. Orthop J Sports Med. 2017;5(1):2325967116684121. https://doi.org/10.1177/2325967116684121.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Isberg J, Faxén E, Brandsson S, et al. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1108–15.

    Article  PubMed  Google Scholar 

  78. Shelbourne KD, Trumper RV. Preventing anterior knee pain after anterior cruciate ligament reconstruction. Am J Sports Med. 1997;25:41–7.

    Article  CAS  PubMed  Google Scholar 

  79. Buckthorpe M, Pirotti E, Della VF. Benefits and use of aquatic therapy during rehabilitation after ACL reconstruction-a clinical commentary. Int J Sports Phys Ther. 2019;14(6):978–93.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Buckthorpe M, La Rosa G, Villa FD. Restoring knee extensor strength after anterior cruciate ligament reconstruction: a clinical commentary. Int J Sports Phys Ther. 2019;14(1):159–72.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bodkin S, Goetschius J, Hertel J, Hart J. Relationships of muscle function and subjective knee function in patients after ACL reconstruction. Orthop J Sports Med. 2017;5:2325967117719041. https://doi.org/10.1177/232596711771904.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zwolski C, Schmitt LC, Quatman-Yates C, et al. The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43:2242–9.

    Article  PubMed  Google Scholar 

  83. Snyder-Mackler L, Delitto A, Bailey SL, et al. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament: a prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am. 1995;77:1166–73.

    Article  CAS  PubMed  Google Scholar 

  84. Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon). 2002;17(1):56–63.

    Article  PubMed  Google Scholar 

  85. Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry following ACL reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43:1662–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Felson DT, Niu J, McClennan C, et al. Knee buckling: prevalence, risk factors, and associated limitations in function. Ann Intern Med. 2007;147:534–40.

    Article  PubMed  Google Scholar 

  87. Amin S, Baker K, Niu J, et al. Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum. 2009;60:189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Drechsler WI, Cramp MC, Scott OM. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol. 2006;98(6):613–23.

    Article  PubMed  Google Scholar 

  89. Harput G, Kilinc HE, Ozer HE, et al. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. J Sport Rehabil. 2015;24(4):398–404.

    Article  PubMed  Google Scholar 

  90. Pua YH, Mentiplay BF, Clark RA, Ho JY. Associations among quadriceps strength and rate of torque development 6 weeks post anterior cruciate ligament reconstruction and future hop and vertical jump performance: a prospective cohort study. J Orthop Sports Phys Ther. 2017;47(11):845–52.

    PubMed  Google Scholar 

  91. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50:946–51.

    Article  PubMed  Google Scholar 

  92. Johnston PT, Feller JA, McClelland JA, Webster KE. Strength deficits and flexion range of motion following primary anterior cruciate ligament reconstruction differ between quadriceps and hamstring autografts. J ISAKOS. 2021;6(2):88–93.

    Article  PubMed  Google Scholar 

  93. Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7(3):231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hopkins JT, Ingersoll CD, Edwards JE, et al. Cryotherapy and TENS decrease arthrogenic muscle inhibition of the vastus medialis following knee joint effusion. J Athl Train. 2002;37:25–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Williams GN, Snyder-Mackler L, Barrance PJ, et al. Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech. 2005;38:685–93.

    Article  PubMed  Google Scholar 

  96. Welling W, Benjaminse A, Lemmink K, Dingenen B, Gokeler A. Progressive strength training restores quadriceps and hamstring muscle strength within 7 months after ACL reconstruction in amateur male soccer players. Phys Ther Sport. 2019;40:10–8.

    Article  PubMed  Google Scholar 

  97. Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135–59.

    Article  Google Scholar 

  98. Hurley MV, Jones DW, Wilson D, et al. Rehabilitation of quadriceps inhibition due to isolated rupture of the anterior cruciate ligament. J Orthop Rheumatol. 1992;5:145–55.

    Google Scholar 

  99. Snyder-Mackler L, Delitto A, Stralka S, et al. Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Phys Ther. 1994;74:901–7.

    Article  CAS  PubMed  Google Scholar 

  100. Urbach D, Nebelung W, Weiler HT, et al. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31:1691–6.

    Article  CAS  PubMed  Google Scholar 

  101. Urbach D, Nebelung W, Becker R, et al. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris a prospective twitch interpolation study. J Bone Joint Surg Br. 2001;83:1104–10.

    Article  CAS  PubMed  Google Scholar 

  102. Lorenz D, Morrison S. Current concepts in periodization of strength and conditioning for the sports physiotherapist. Int J Sports Phys Ther. 2015;10:734–47.

    PubMed  PubMed Central  Google Scholar 

  103. Lorenz DS, Reiman MP, Walker JC. Periodization: current review and suggested implementation for athletic rehabilitation. Sports Health. 2010;2:509–18.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Escamilla RF, Macleod TD, Wilk KE, et al. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20.

    Article  PubMed  Google Scholar 

  105. Grodski M, Marks R. Exercises following anterior cruciate ligament reconstructive surgery: biomechanical considerations and efficacy of current approaches. Res Sports Med. 2008;16(2):75–96.

    Article  PubMed  Google Scholar 

  106. Woo SL, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991;19:217–25.

    Article  CAS  PubMed  Google Scholar 

  107. Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39(16):2943–50.

    Article  PubMed  Google Scholar 

  108. Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med. 2017;47(2):221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vogl TJ, Schmitt J, Lubrich J, et al. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol. 2001;11(8):1450–6.

    Article  CAS  PubMed  Google Scholar 

  110. Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BPTB used for ACL graft: histological evaluation from 6 months to 10 years. Knee. 2007;14(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  111. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4:162–72.

    Article  CAS  PubMed  Google Scholar 

  112. Claes S, Verdonk P, Forsyth R, Bellemans J. The, “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med. 2011;39:2476–83.

    Article  PubMed  Google Scholar 

  113. Morrissey MC, Hudson ZL, Drechsler WI, et al. Effects of open versus closed kinetic chain training on knee laxity in the early period after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2000;8:343–8.

    Article  CAS  PubMed  Google Scholar 

  114. Culvenor AG, Collins NJ, Vicenzino B, et al. Predictors and effects of patellofemoral pain following hamstring-tendon ACL reconstruction. J Sci Med Sport. 2016;19:518–23.

    Article  PubMed  Google Scholar 

  115. Luque-Seron JA, Medina-Porqueres I. Anterior cruciate ligament strain in vivo: a systematic review. Sports Health. 2016;8:451–5.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Salem GJ, Salinas R, Harding FV. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2003;84:1211–6.

    Article  PubMed  Google Scholar 

  117. Sigward SM, Chan MM, Lin PE, et al. Compensatory strategies that reduce knee extensor demand during a bilateral squat change from 3 to 5 months following anterior cruciate ligament reconstruction. J Orthop Sport Phys Ther. 2018;48(9):713–8.

    Article  Google Scholar 

  118. Noehren B, Snyder-Mackler L. Who’s afraid of the Big Bad Wolf? Open-chain exercises after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2020;50(9):473–5.

    Article  PubMed  Google Scholar 

  119. Perriman A, Leahy E, Semciw AI. The effect of open- versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2018;48:552–66.

    Article  PubMed  Google Scholar 

  120. Englander ZA, Garrett WE, Spritzer CE, DeFrate LE. In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography. J Biomech. 2020;98: 109443. https://doi.org/10.1016/j.jbiomech.2019.109443.

    Article  PubMed  Google Scholar 

  121. Wilk KE, Escamilla RF, Fleisig GS, et al. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med. 1996;24(4):518–27.

    Article  CAS  PubMed  Google Scholar 

  122. Steinkamp LA, Dillingham MF, Markel MD, et al. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med. 1993;21:438–44.

    Article  CAS  PubMed  Google Scholar 

  123. Fleming BC, Oksendahl H, Beynnon BD. Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev. 2005;33:134–40.

    Article  PubMed  Google Scholar 

  124. Culvenor AG, Øiestad BE, Holm I, et al. Anterior knee pain following anterior cruciate ligament reconstruction does not increase the risk of patellofemoral osteoarthritis at 15- and 20-year follow-ups. Osteoarthr Cartil. 2017;25:30–3.

    Article  CAS  Google Scholar 

  125. Escamilla RF, Fleisig GS, Zheng N, et al. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30:556–9.

    Article  CAS  PubMed  Google Scholar 

  126. Anderson T, Kearney JT. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res Q Exerc Sport. 1982;53:1–7.

    Article  CAS  PubMed  Google Scholar 

  127. Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.

    Article  PubMed  Google Scholar 

  128. Harber MP, Fry AC, Rubin MR, et al. Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scand J Med Sci Sports. 2004;14:176–85.

    Article  PubMed  Google Scholar 

  129. Burd NA, West DW, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than low volume resistance exercise in young men. PLoS ONE. 2010;5(8): e12033. https://doi.org/10.1371/journal.pone.0012033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rio E, Kidgell D, Purdam C, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.

    Article  PubMed  Google Scholar 

  131. Rio E, Kidgell D, Moseley GL, et al. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br J Sports Med. 2016;50(4):209–15.

    Article  PubMed  Google Scholar 

  132. Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil. 2013. https://doi.org/10.1123/jsr.2013.TR7.

    Article  PubMed  Google Scholar 

  133. Kannus P, Beynnon B. Peak torque occurrence in the range of motion during isokinetic extension and flexion of the knee. Int J Sports Med. 1993;14(8):422–6.

    Article  CAS  PubMed  Google Scholar 

  134. Ardern CL, Webster KE, Taylor NF, et al. Hamstring strength recovery after hamstring tendon harvest for anterior cruciate ligament reconstruction: a comparison between graft types. Arthroscopy. 2010;26(4):462–9.

    Article  PubMed  Google Scholar 

  135. Nomura Y, Kuramochi R, Kukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  136. Tengman E, Brax Olofsson L, Stensdotter AK, et al. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength. Scand J Med Sci Sports. 2014;24(6):e501–9.

    CAS  PubMed  Google Scholar 

  137. Timmins RG, Bourne MN, Shield AJ, et al. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48:337–45.

    Article  PubMed  Google Scholar 

  138. Vairo GL. Knee flexor strength and endurance profiles after ipsilateral hamstring tendons anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2014;95(3):552–61.

    Article  PubMed  Google Scholar 

  139. Cristiani R, Mikkelsen C, Forssblad M, et al. Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kim HJ, Lee JH, Ahn SE, et al. Influence of anterior cruciate ligament tear on thigh muscle strength and hamstring-to-quadriceps ratio: a meta-analysis. PLoS ONE. 2016;11(1): e0146234. https://doi.org/10.1371/journal.pone.0146234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bourne MN, Bruder AM, Mentiplay BF. Eccentric knee flexor weakness in elite female footballers 1–10 years following anterior cruciate ligament reconstruction. Phys Ther Sport. 2019;37:144–9.

    Article  PubMed  Google Scholar 

  142. Irie K, Tomatsu T. Atrophy of semitendinosus and gracilis and flexor mechanism function after hamstring tendon harvest for anterior cruciate ligament reconstruction. Orthopedics. 2002;25:491–5.

    Article  PubMed  Google Scholar 

  143. Snow BJ, Wilcox JJ, Burks RT, Greis PE. Evaluation of muscle size and fatty infiltration with MRI nine to eleven years following hamstring harvest for ACL reconstruction. J Bone Jt Surg Am. 2012;94:1274–82.

    Article  Google Scholar 

  144. Williams GN, Synder-Mackler L, Barrance PJ, et al. Muscle and tendon morphology after reconstruction of the anterior cruciate ligament with autologous semitendinosus-gracilis graft. J Bone Jt Surg Am. 2004;86(9):1936–46.

    Article  Google Scholar 

  145. Buckthorpe M, Danelon F, La Rosa G, et al. Recommendations for hamstring function recovery after ACL reconstruction. Sports Med. 2021;51(4):607–24.

    Article  PubMed  Google Scholar 

  146. Carofino B, Fulkerson J. Medial hamstring tendon regeneration following harvest for anterior cruciate ligament reconstruction: fact, myth and clinical application. Arthroscopy. 2005;21:1257–65.

    Article  PubMed  Google Scholar 

  147. Ristanis S, Tsepis E, Giotis D, et al. Electromechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(11):2179–86.

    Article  PubMed  Google Scholar 

  148. Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215(11):1944–56. https://doi.org/10.1242/jeb.064527.

    Article  PubMed  Google Scholar 

  149. Fong CM, Blackburn JT, Norcross MF, McGrath M, Padua DA. Ankle-dorsiflexion range of motion and landing biomechanics. J Athl Train. 2011;46(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schlumberger A. Strength of ankle muscles in high level athletes after knee surgery. 3rd International Conference on Strength Training; 13–17 November 2002; Budapest.

  151. Hasegawa S, Kobayashi M, Arai R, et al. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2011;21(4):622–30.

    Article  PubMed  Google Scholar 

  152. Karanikas K, Arampatzis A, Bruggemann GP. Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med. 2009;45(1):37–45.

    CAS  PubMed  Google Scholar 

  153. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610–20.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Petersen W, Taheri P, Forkel P, Zantop T. Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg. 2014;134:1417–28.

    Article  PubMed  Google Scholar 

  155. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts non-contact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355–61.

    Article  PubMed  Google Scholar 

  156. Davis IS, Powers CM. Patellafemoral pain syndrome: proximal, distal and local factors, an international retreat. April 30–May 2, 2009, Fells Point, Baltimore, MD. J Orthop Sports Phys Ther. 2010;40(3):1–16.

    Article  Google Scholar 

  157. Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):42–51.

    Article  PubMed  Google Scholar 

  158. Buckthorpe M, Stride M, Della VF. Gluteus maximus dysfunction: its relevance to athletic performance and injury and how to treat it: a clinical commentary. Int J Sports Phys Ther. 2019;14(4):655–69.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bullock-Saxton JE, Janda V, Bullock MI. The influence of ankle sprain injury on muscle activation during hip extension. Int J Sports Med. 1994;15:130–4.

    Article  Google Scholar 

  160. Lafond D, Normand MC, Gosselin G. Rapport force. J Can Chiropract Assoc. 1998;42(2):90–100.

    Google Scholar 

  161. Vakos JP, Nitz AJ, Threlkeld AJ, et al. Electromyographic activity of selected trunk and hip muscles during a squat lift. Spine. 1994;19(6):687–95.

    Article  CAS  PubMed  Google Scholar 

  162. Prins MR, van der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55:9–15.

    Article  PubMed  Google Scholar 

  163. Collins NJ, Barton CJ, van Middelkoop M, et al. 2018 Consensus statement on exercise therapy and physical interventions (orthoses, taping and manual therapy) to treat patellofemoral pain: recommendations from the 5th International Patellofemoral Pain Research Retreat, Gold Coast, Australia, 2017. Br J Sports Med. 2018;52(18):1170–8.

    Article  PubMed  Google Scholar 

  164. Lack S, Neal B, De Oliveira SD, Barton C. How to manage patellofemoral pain: understanding the multifactorial nature and treatment options. Phys Ther Sport. 2018;32:155–66.

    Article  PubMed  Google Scholar 

  165. Santos TRT, Oliveira BA, Ocarino JM, et al. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review. Braz J Phys Ther. 2015;19:167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Willy RW, Hoglund LT, Barton CJ, et al. Patellofemoral pain. J Orthop Sports Phys Ther. 2019;49(9):1–95.

    Article  Google Scholar 

  167. Decker MJ, Torry MR, Noonan TJ, et al. Landing adaptations after ACL reconstruction. Med Sci Sports Exerc. 2002;34(9):1408–13.

    Article  PubMed  Google Scholar 

  168. de Fontenay BP, Argaud S, Blache Y, et al. Motion alterations after anterior cruciate ligament reconstruction: comparison of the injured and uninjured lower limbs during a single-legged jump. J Athl Train. 2014;49(3):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee SP, Chow JW, Tillman MD. Persons with reconstructed ACL exhibit altered knee mechanics during high speed manoeuvres. In J Sports Med. 2014;35(6):528–33.

    Google Scholar 

  170. Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sterns KM, Pollard CD. Abnormal frontal plane knee mechanics during sidestep cutting in female soccer athletes after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2013;41(4):918–23.

    Article  Google Scholar 

  172. Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc. 2008;40(2):215–22.

    Article  PubMed  Google Scholar 

  173. Oiestad BE, Holm I, Aune AK, et al. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med. 2010;38(11):2201–10.

    Article  PubMed  Google Scholar 

  174. Buckthorpe M. Recommendations for movement re-training after ACL reconstruction. Sports Med. 2021;51(8):1601–8.

    Article  PubMed  Google Scholar 

  175. Neitzel JA, Kernozek TW, Davies GJ. Loading response following anterior cruciate ligament reconstruction during the parallel squat exercise. Clin Biomech (Bristol, Avon). 2002;17(7):551–4.

    Article  PubMed  Google Scholar 

  176. Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381–93.

    Article  PubMed  Google Scholar 

  177. Grooms DR, Page SJ, Nichols-Larsen DS, et al. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180–9.

    Article  PubMed  Google Scholar 

  178. Kapreli E, Athanasopoulos S, Gliatis J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):2419–26.

    Article  PubMed  Google Scholar 

  179. Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses. 2006;67:645–50.

    Article  PubMed  Google Scholar 

  180. Gokeler A, Neuhaus D, Benjaminse A, et al. Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury. Sports Med. 2019;49(6):853–65.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Wadey R. Sport injury psychology: cultural, relational, and methodological considerations. London: Routledge; 2021.

    Google Scholar 

  182. Brewer BW, Redmond CJ. Psychology of sport injury. Champaign: Human Kinetics; 2017.

    Book  Google Scholar 

  183. Wadey R, Evans L. Working with injured athletes: research and practice. In: Hanton S, Mellalieu SD, editors. Professional practice in sport psychology: a review. London: Routledge; 2011. p. 107–32.

    Google Scholar 

  184. Gledhill A, Forsdyke D. The psychology of sports injury: from risk to retirement. London: Routledge; 2021.

    Book  Google Scholar 

  185. Everard C, Wadey R, Howells K. Storying sports injury experiences of elite track athletes: a narrative analysis. Psychol Sport Exerc. 2021;56: 102007. https://doi.org/10.1016/j.psychsport.2021.102007.

    Article  Google Scholar 

  186. Sparkes A. Athletic identity: an Achilles’ heel to the survival of self. Qual Health Res. 2016;8(5):644–64.

    Article  Google Scholar 

  187. Atkinson M. Pain and injury: from the unidimensional to the multidimensional. In: Wadey R, editor. Sport injury psychology: cultural, relational, and methodological considerations. London: Routledge; 2020. p. 61–73.

    Chapter  Google Scholar 

  188. Tamminen K, Dunn R, Gairdner S. Time to re-evaluate injured athletes’ emotional responses. In: Wadey R, editor. Sport injury psychology: cultural, relational, and methodological considerations. London: Routledge; 2020. p. 96–107.

    Chapter  Google Scholar 

  189. Mankad A, Gordon S, Wallman K. Perceptions of emotional climate among injured athletes. J Clin Sport Psych. 2009;3(1):1–14.

    Article  Google Scholar 

  190. Salim J, Wadey R, Diss C. Examining hardiness, coping and stress-related growth following sport injury. J Appl Sport Psychol. 2015;28:154–69.

    Article  Google Scholar 

  191. Carson F, Polman RCJ. The facilitative nature of avoidance coping within sports injury rehabilitation. Scand J Med Sci Sports. 2010;20(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  192. Wadey R, Evans L, Hanton S, Sarkar M, Oliver H. Can preinjury adversity affect postinjury responses? A 5-year prospective, multi-study analysis. Front Psychol. 2019;10:1411. https://doi.org/10.3389/fpsyg.2019.01411.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gervis M, Pickford H, Hau T, Fruth M. A review of the psychological support mechanisms available for long-term injured footballers in the UK throughout their rehabilitation. Sci Med Football. 2020;4(1):22–9.

    Article  Google Scholar 

  194. Rock JA, Jones MV. A preliminary investigation into the use of counselling skills in support of rehabilitation from sport injury. J Sport Rehabil. 2002;11(4):284–304.

    Article  Google Scholar 

  195. Bianco T. Social support and recovery from sport injury: elite skiers share their experiences. Res Q Exerc Sport. 2001;72:376–88.

    Article  CAS  PubMed  Google Scholar 

  196. Cecil S. Less control, more flexibility: using acceptance and commitment therapy with injured athletes. In: Wadey R, editor. Sport injury psychology: cultural, relational, and methodological considerations. London: Routledge; 2020. p. 197–206.

    Chapter  Google Scholar 

  197. Salim J, Wadey R. Can emotional disclosure promote sport injury-related growth? J Appl Sport Psychol. 2018;30(4):367–87.

    Article  Google Scholar 

  198. Everard C, Wadey R, Howells K, Day M. Construction and communication of evidence-based video narrative in elite sport: knowledge translation of sport injury experiences. J Appl Sport Psychol. 2022. https://doi.org/10.1080/10413200.2022.2140225.

    Article  Google Scholar 

  199. Gervis M, Pickford H, Hau T. Professional Footballers’ Association Counselors’ perceptions of the role long-term injury plays in mental health issues presented by current and former players. J Clin Sport Psychol. 2019;13(3):451–68.

    Article  Google Scholar 

  200. Souter G, Lewis R, Serrant L. Men, mental health and elite sport: a narrative review. Sports Med Open. 2018;4:57. https://doi.org/10.1186/s40798-018-0175-7.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Carson F, Polman RCJ. ACL injury rehabilitation: a psychological case study of a professional rugby union player. J Clin Sport Psychol. 2008;2:71–90.

    Article  Google Scholar 

  202. Griffin LJ, Moll T, Williams T, Evans L. Rehabilitation from sport injury: a social support perspective. In: Zenko Z, Jones L, editors. Essentials of exercise and sport psychology: an open access textbook. Society of Transparency, Openness, and Replication of Kinesiology; 2021: p. 734–78

  203. Kerai S. Physiotherapist-injured athlete relationship: toward a cultural and relational understanding. In: Wadey R, editor. Sport injury psychology: cultural, relational, and methodological interpretations. London: Routledge; 2020. p. 108–19.

    Chapter  Google Scholar 

  204. Bejar MP, Raabe J, Zakrajsek RA, Fisher LA, Clement D. Athletic trainers’ influence on national collegiate athletic associates division I athletes’ base psychological needs during sport injury rehabilitation. J Athl Train. 2019;54(3):245–54.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Clement D, Arvinen-Barrow M, Fetty T. Psychosocial responses during different phases of sport injury rehabilitation: a qualitative study. J Athl Train. 2015;50(1):95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Niven A. Rehabilitation adherence in sport injury: sport physiotherapists’ perceptions. J Sport Rehabil. 2007;16(2):93–110.

    Article  PubMed  Google Scholar 

  207. Brewer BW. The role of psychological factors in sport injury rehabilitation outcomes. Int Rev Sport Exerc Psychol. 2010;3:40–61.

    Article  Google Scholar 

  208. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation part 1: 4 pillars of high-quality on-field rehabilitation are restoring movement quality, physical conditioning, restoring sport-specific skills, and progressively developing chronic training load. J Orthop Sports Phys Ther. 2019;49(8):565–9.

    Article  PubMed  Google Scholar 

  209. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation part 2: a 5-stage program for the soccer player focused on linear movements, multidirectional movements, soccer-specific skills, soccer-specific movements, and modified practice. J Orthop Sports Phys Ther. 2019;49(8):570–5.

    Article  PubMed  Google Scholar 

  210. Ardern CL, Glasgow P, Schneiders A, et al. 2016 consensus statement on return to sport from the first world congress in sports physical therapy. Bern Br J Sports Med. 2016;50:853–64.

    Article  PubMed  Google Scholar 

  211. Almeida AM, Santos Silva PR, Pedrinelli A, Hernandez AJ. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE. 2018;13(3): e0194432.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Carrol TJ, Herbert RD, Munn J, et al. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101:1514–22.

    Article  Google Scholar 

  213. Harput G, Ulusoy B, Tildiz TI, et al. Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surg Traumatol Arthrosc. 2019;27(1):68–75.

    Article  Google Scholar 

  214. Minshull C, Gallacher P, Roberts S, et al. Contralateral strength training attenuates muscle performance loss following anterior cruciate ligament (ACL) reconstruction: a randomised-controlled trial. Eur J Appl Physiol. 2021;121(12):3551–9.

    Article  PubMed  Google Scholar 

  215. Tseng WC, Nosaka K, Tseng KW, Chou TY, Chen TC. Contralateral effects by unilateral eccentric versus concentric resistance training. Med Sci Sports Exerc. 2020;52(2):474–83.

    Article  PubMed  Google Scholar 

  216. Logerstedt D, Sennett BJ. Case series utilizing drop-out casting for the treatment of knee joint extension motion loss following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2007;37(7):404–11.

    Article  PubMed  Google Scholar 

  217. Rice D, McNair PJ, Dalbeth N. Effects of cryotherapy on arthrogenic muscle inhibition using an experimental model of knee swelling. Arthritis Rheum. 2009;61(1):78–83.

    Article  PubMed  Google Scholar 

  218. Kuenze CM, Kelly AR, Jun HP, Eltoukhy M. Unilateral quadriceps strengthening with disinhibitory cryotherapy and quadriceps symmetry after anterior cruciate ligament reconstruction. J Athl Train. 2017;52(11):1010–8.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Hart JM, Kuenze CM, Diduch DR, Ingersoll CD. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction. J Athl Train. 2014;49(6):733–9.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Stokes M, Shakespeare D, Sherman K, et al. Transcutaneous nerve stimulation and post-meniscectomy quadriceps inhibition. Int J Rehabil Res. 1985;8:248.

    Google Scholar 

  221. Arvidsson I, Eriksson E. Postoperative TENS pain relief after knee surgery: objective evaluation. Orthopedics. 1986;9:1346–51.

    Article  CAS  PubMed  Google Scholar 

  222. Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2023;49(3):411–21.

    Article  Google Scholar 

  223. Rush JL, Glaviano NR, Norte GE. Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sport Med. 2021;51:961–90.

    Article  Google Scholar 

  224. Sherman DA, Glaviano NR, Norte GE. Hamstrings neuromuscular function after anterior cruciate ligament reconstruction: a systematic review and meta-Analysis. Sport Med. 2021;51:1751–69.

    Article  Google Scholar 

  225. Sahrmann S. Diagnosis and treatment of movement impairment syndromes. Oxford: Elsevier Health Sciences; 2013.

    Google Scholar 

  226. Yu S, Lowe T, Griffin L, Dong XN. Single bout of vibration-induced hamstrings fatigue reduces quadriceps inhibition and coactivation of knee muscles after anterior cruciate ligament (ACL) reconstruction. J Electromyogr Kinesiol. 2020;55:10246. https://doi.org/10.1016/j.jelekin.2020.102464.

    Article  Google Scholar 

  227. Hauger AV, Reiman MP, Bjordal JM, et al. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc. 2018;26:399–410.

    Article  PubMed  Google Scholar 

  228. Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee. 2015;22(3):270–7.

    Article  PubMed  Google Scholar 

  229. Binder-Macleod SA, Halden EE, Jungles KA. Efects of stimulation intensity on the physiological responses of human motor units. Med Sci Sports Exerc. 1995;27:556–65.

    Article  CAS  PubMed  Google Scholar 

  230. Cabric M, Appel HJ, Resic A. Fine structural changes in electrostimulated human skeletal muscle. Evidence for predominant effects on fast muscle fibres. Eur J Appl Physiol Occup Physiol. 1987;57:1–5.

    Article  Google Scholar 

  231. Trimble MH, Enoka RM. Mechanism underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther. 1991;71:273–80.

    Article  CAS  PubMed  Google Scholar 

  232. Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111:2399–407.

    Article  PubMed  Google Scholar 

  233. Henneman E, Clamann HP, Gillies JD, Skinner RD. Rank order of motoneurons within a pool: law of combination. J Neurophysiol. 1974;37:1338–49.

    Article  CAS  PubMed  Google Scholar 

  234. Gorgey AS, Timmons MK, Dolbow DR, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016;116:1231–44.

    Article  PubMed  Google Scholar 

  235. Natsume T, Ozaki H, Saito AI, et al. Effects of electrostimulation with blood flow restriction on muscle size and strength. Med Sci Sports Exerc. 2015;47:2621–7.

    Article  PubMed  Google Scholar 

  236. Slysz JT, Boston M, King R, et al. Blood flow restriction combined with electrical stimulation attenuates thigh muscle disuse atrophy. Med Sci Sports Exerc. 2021;53(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  237. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–11.

    Article  PubMed  Google Scholar 

  238. Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. https://doi.org/10.3389/fphys.2019.00533.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Giles L, Webster KE, Mcclelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med. 2017;51(23):1688–94.

    Article  PubMed  Google Scholar 

  240. Ladlow P, Coppack RJ, Dharm-Datta S, et al. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled trial. Front Physiol. 2018;9:1269. https://doi.org/10.3389/fphys.2018.01269.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ohta H, Kurosawa H, Ikeda H, et al. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62–8.

    Article  PubMed  Google Scholar 

  242. Hughes L, Rosenblatt B, Haddad F, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial. Sports Med. 2019;49(11):1787–805.

    Article  PubMed  Google Scholar 

  243. Hughes L, Patterson SD, Haddad F, et al. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service trial. Phys Ther Sport. 2019;39:90–8.

    Article  PubMed  Google Scholar 

  244. Carr LJ, Harrison LM, Stephens JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol. 1994;475(2):217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhou S. Chronic neural adaptations to unilateral exercise: mechanisms of cross education. Exerc Sport Sci Rev. 2000;28(4):177–84.

    CAS  PubMed  Google Scholar 

  246. Chung KS, Ha JK, Yeom CH, et al. Are muscle strength and function of the uninjured lower limb weakened after anterior cruciate ligament injury? Two-year follow up after reconstruction. Am J Sports Med. 2015;43:3101–21.

    Article  Google Scholar 

  247. Lepley AS, Gribble PA, Thomas AC, et al. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828–39.

    Article  CAS  PubMed  Google Scholar 

  248. Zult T, Gokeler A, van Raay JJ, et al. An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation. Knee Surg Sports Traumatol Arthrosc. 2017;25:172–83.

    Article  PubMed  Google Scholar 

  249. Graven-Nielsen T, Lund H, Arendt-Nielsen L, et al. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.

    Article  PubMed  Google Scholar 

  250. Henriksen M, Rosager S, Aaboe J, et al. Experimental knee pain reduces muscle strength. J Pain. 2011;12(4):460–7.

    Article  PubMed  Google Scholar 

  251. Palmieri-Smith RM, Kreinbrink J, AshtonMiller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med. 2007;35(8):1269–75.

    Article  PubMed  Google Scholar 

  252. Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):7–14.

    Article  CAS  Google Scholar 

  253. Sachs RA, Daniel DM, Stone ML, Garfein RF. Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med. 1989;16(6):760–5.

    Article  Google Scholar 

  254. Norkin CC, White DJ. Measurement of joint motion: a guide to goniometry. 5th ed. Philadelphia: F.A. Davis Company; 2017.

    Google Scholar 

  255. Lynch A, Logerstedt D, Axe M, Snyder-Mackler L. Quadriceps activation failure after anterior cruciate ligament rupture is not mediated by knee joint efusion. J Orthop Sports Phys Ther. 2012;42:502–10.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Potter H, Foo L. Magnetic resonance imaging of joint arthroplasty. Orthop Clin North Am. 2006;37:361–73.

    Article  PubMed  Google Scholar 

  257. Bush-Joseph C, Hurwitz D, Patel R, et al. Dynamic function after anterior cruciate ligament reconstruction with autologous patella tendon. Am J Sports Med. 2001;29:36–41.

    Article  CAS  PubMed  Google Scholar 

  258. Kocher M, Steadman J, Briggs K, Sterett W, Hawkins R. Relationship between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–34.

    Article  PubMed  Google Scholar 

  259. Decker M, Torry M, Noonan T, Sterett W, Steadman J. Gait re-training after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2004;85:848–56.

    Article  PubMed  Google Scholar 

  260. Dye S, Staubli H, Biedert R, Vaupel G. The mosaic of pathophysiology causing patellofemoral pain: therapeutic implications. Oper Tech Sports Med. 1999;7:46–54.

    Article  Google Scholar 

  261. Myer G, Brent J, Ford K, Hewett T. A pilot study to determine the effect of trunk and hip focused neuromuscular training on hip and knee isokinetic strength. Br J Sports Med. 2008;42:614–9.

    Article  CAS  PubMed  Google Scholar 

  262. Crossley KM, Zhang WJ, Schache AG, et al. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39(4):866–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Buckthorpe.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of Interest

Matthew Buckthorpe, Alli Gokeler, Lee Herrington, Mick Hughes, Alberto Grassi, Ross Wadey, Stephen Patterson, Alessandro Compagnin, Giovanni La Rosa and Francesco Della Villa have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

MB conceived the idea for the paper and wrote the first version of the manuscript. MB, MH, AC and GLR produced the supplementary video content. All authors have been involved in drafting the manuscript or revising it critically for important intellectual content. All authors read and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 37188 KB)

Supplementary file2 (MP4 34549 KB)

Supplementary file3 (MP4 25310 KB)

Supplementary file4 (MP4 120172 KB)

Supplementary file5 (MP4 79640 KB)

Supplementary file6 (MP4 39508 KB)

Supplementary file7 (MP4 63954 KB)

Supplementary file8 (MP4 37887 KB)

Supplementary file9 (MP4 21506 KB)

Supplementary file10 (MP4 27187 KB)

Supplementary file11 (MP4 38662 KB)

Supplementary file12 (MP4 55498 KB)

Supplementary file13 (MP4 56964 KB)

Supplementary file14 (MP4 47435 KB)

Supplementary file15 (MP4 41520 KB)

Supplementary file16 (MP4 52892 KB)

Supplementary file17 (MP4 28775 KB)

Supplementary file18 (MP4 47583 KB)

Supplementary file19 (MP4 53907 KB)

Supplementary file20 (MP4 22317 KB)

Supplementary file21 (MP4 84292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckthorpe, M., Gokeler, A., Herrington, L. et al. Optimising the Early-Stage Rehabilitation Process Post-ACL Reconstruction. Sports Med 54, 49–72 (2024). https://doi.org/10.1007/s40279-023-01934-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01934-w

Navigation