Skip to main content
Log in

Dose-Dependent Effect of Supervised Aerobic Exercise on HbA1c in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Previous meta-analyses indicated that aerobic exercise can improve glycemic control. However, the optimum dose of exercise is still being discussed.

Objective

The aim of this study was to examine the dose-dependent effect of supervised aerobic training (SAT) on glycated hemoglobin (HbA1c).

Methods

We searched PubMed, Scopus, and Web of Science to May 2021 for randomized trials with an intervention period of 12 weeks or longer evaluating the effect of SAT on HbA1c in adults with type 2 diabetes mellitus. Secondary outcomes included quality of life, change in hypoglycemic medications, and adverse events. A random-effects dose–response meta-analysis was conducted.

Results

The analysis of 26 trials with 1253 participants indicated that each 30-min/week SAT reduced HbA1c by − 0.22 percentage point (95% CI − 0.29 to − 0.15; GRADE = strong). Levels of HbA1c decreased proportionally with the increase in the duration of moderate to vigorous-intensity SAT to 100 min/week (mean difference100 min/week: − 0.96 percentage point, 95% CI − 1.25 to − 0.67), with flattening of the curve at higher duration. Aerobic exercise decreased antidiabetic medications by 13 per 100 patients (risk difference 0.13, 95% CI 0.02–0.23; 7 trials, n = 375; GRADE = moderate), and increased hypoglycemic reactions by 10 per 100 patients (risk difference: 0.10, 95% CI 0.03–0.17; 4 trials, n = 263; GRADE = low) and adverse events by 4 per 100 patients (risk difference: 0.04, 95% CI − 0.02 to 0.11; 2 trials, n = 236; GRADE = low). Limited evidence is available for quality of life.

Conclusions

Every 30 min/week of moderate to vigorous aerobic exercise can exert a significant effect on HbA1c, with the highest effect observed from 100 min/week and above. However, exercise durations above 100 min/week seem ineffective for further reductions.

Protocol Registration

PROSPERO (CRD42021257251).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):1–11.

    CAS  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  3. Riddle MC, Herman WH. The cost of diabetes care—an elephant in the room. Diabetes Care. 2018;41(5):929–32.

    Article  PubMed  Google Scholar 

  4. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.

    Article  PubMed  Google Scholar 

  5. Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015;38(8):1610–4.

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the US, 2000–2002. Diabetes Care. 2005;28(7):1599–603.

    Article  PubMed  Google Scholar 

  7. Association AD. Executive summary: standards of medical care in diabetes—2012. Diabetes Care. 2012;35(Suppl 1):S4–10.

    Google Scholar 

  8. Association AD. 5. Facilitating behavior change and well-being to improve health outcomes: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Suppl 1):S48–65.

    Article  Google Scholar 

  9. Nesti L, Pugliese NR, Sciuto P, Natali A. Type 2 diabetes and reduced exercise tolerance: A review of the literature through an integrated physiology approach. Cardiovasc Diabetol. 2020;19(1):1–17.

    Article  CAS  Google Scholar 

  10. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–9.

    Article  CAS  PubMed  Google Scholar 

  11. Pan B, Ge L, Xun Y-Q, Chen Y-J, Gao C-Y, Han X, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15(1):1–14.

    Article  Google Scholar 

  12. Bretz F, Hsu J, Pinheiro J, Liu Y. Dose finding—a challenge in statistics. Biom J J Math Methods Biosci. 2008;50(4):480–504.

    Google Scholar 

  13. Crippa A, Orsini N. Dose-response meta-analysis of differences in means. BMC Med Res Methodol. 2016;16(1):1–10.

    Article  CAS  Google Scholar 

  14. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. New York: Wiley; 2019.

    Book  Google Scholar 

  15. Schunemann H. GRADE handbook for grading quality of evidence and strength of recommendation. Version 3.2 (2008). http://www.cc-ims.net/gradepro.

  16. Kilpatrick ES. Haemoglobin A1c in the diagnosis and monitoring of diabetes mellitus. J Clin Pathol. 2008;61(9):977–82.

    Article  CAS  PubMed  Google Scholar 

  17. Sullivan M, Sullivan L, Kral J. Quality of life assessment in obesity: physical, psychological, and social function. Gastroenterol Clin North Am. 1987;16(3):433–42.

    Article  CAS  PubMed  Google Scholar 

  18. Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502.

    Article  PubMed  Google Scholar 

  19. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343.

  20. Chandler J, Cumpston M, Li T, Page M, Welch V. Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley; 2019.

    Google Scholar 

  21. Higgins JP, Deeks JJ. Selecting studies and collecting data. Cochrane handbook for systematic reviews of interventions: Cochrane book series; 2008. p. 151–85.

  22. Furukawa TA, Barbui C, Cipriani A, Brambilla P, Watanabe N. Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol. 2006;59(1):7–10.

    Article  PubMed  Google Scholar 

  23. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  24. Schandelmaier S, Briel M, Varadhan R, Schmid CH, Devasenapathy N, Hayward RA, et al. Development of the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses. CMAJ. 2020;192(32):E901–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics; 1994. p. 1088–101.

  27. Higgins JP, Savović J, Page MJ, Elbers RG, Sterne JA. Assessing risk of bias in a randomized trial. Cochrane handbook for systematic reviews of interventions; 2019. p. 205–28.

  28. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence—imprecision. J Clin Epidemiol. 2011;64(12):1283–93.

    Article  PubMed  Google Scholar 

  30. Guyatt G, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. Corrigendum to GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol 2011; 64: 1283–1293. J Clin Epidemiol. 2021;137:265.

    Article  PubMed  Google Scholar 

  31. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021;372.

  32. Alvarez C, Ramirez-Campillo R, Martinez-Salazar C, Mancilla R, Flores-Opazo M, Cano-Montoya J, et al. Low-volume high-intensity interval training as a therapy for type 2 diabetes. Int J Sports Med. 2016;37(09):723–9.

    Article  CAS  PubMed  Google Scholar 

  33. Belli T, Ribeiro LFP, Ackermann MA, Baldissera V, Gobatto CA, da Silva RG. Effects of 12-week overground walking training at ventilatory threshold velocity in type 2 diabetic women. Diabetes Res Clin Pract. 2011;93(3):337–43.

    Article  PubMed  Google Scholar 

  34. Blonk M, Jacobs M, Biesheuvel E, Weeda-Mannak W, Heine R. Influences on weight loss in Type 2 diabetic patients: little long-term benefit from group behaviour therapy and exercise training. Diabet Med. 1994;11(5):449–57.

    Article  CAS  PubMed  Google Scholar 

  35. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304(20):2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dede ND, Ipekci SH, Kebapcilar L, Arslan M, Kurban S, Yildiz M, et al. Influence of exercise on leptin, adiponectin and quality of life in type 2 diabetics. Turk J Endocrinol Metab. 2015;19:7–13.

    Article  Google Scholar 

  37. Gholami F, Nikookheslat S, Salekzamani Y, Boule N, Jafari A. Effect of aerobic training on nerve conduction in men with type 2 diabetes and peripheral neuropathy: a randomized controlled trial. Neurophysiol Clin. 2018;48(4):195–202.

    Article  PubMed  Google Scholar 

  38. Giannopoulou I, Fernhall B, Carhart R, Weinstock RS, Baynard T, Figueroa A, et al. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism. 2005;54(7):866–75.

    Article  CAS  PubMed  Google Scholar 

  39. Goldhaber-Fiebert JD, Goldhaber-Fiebert SN, Tristán ML, Nathan DM. Randomized controlled community-based nutrition and exercise intervention improves glycemia and cardiovascular risk factors in type 2 diabetic patients in rural Costa Rica. Diabetes Care. 2003;26(1):24–9.

    Article  PubMed  Google Scholar 

  40. Gulsin GS, Swarbrick DJ, Athithan L, Brady EM, Henson J, Baldry E, et al. Effects of low-energy diet or exercise on cardiovascular function in working-age adults with type 2 diabetes: a prospective, randomized, open-label, blinded end point trial. Diabetes Care. 2020;43(6):1300–10.

    Article  CAS  PubMed  Google Scholar 

  41. Jorge MLMP, de Oliveira VN, Resende NM, Paraiso LF, Calixto A, Diniz ALD, et al. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism. 2011;60(9):1244–52.

    Article  CAS  PubMed  Google Scholar 

  42. Kadoglou NP, Iliadis F, Sailer N, Athanasiadou Z, Vitta I, Kapelouzou A, et al. Exercise training ameliorates the effects of rosiglitazone on traditional and novel cardiovascular risk factors in patients with type 2 diabetes mellitus. Metabolism. 2010;59(4):599–607.

    Article  CAS  PubMed  Google Scholar 

  43. Kadoglou NP, Perrea D, Iliadis F, Angelopoulou N, Liapis C, Alevizos M. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care. 2007;30(3):719–21.

    Article  CAS  PubMed  Google Scholar 

  44. Ku Y, Han K, Ahn H, Kwon H, Koo B, Kim H, et al. Resistance exercise did not alter intramuscular adipose tissue but reduced retinol-binding protein-4 concentration in individuals with type 2 diabetes mellitus. J Int Med Res. 2010;38(3):782–91.

    Article  CAS  PubMed  Google Scholar 

  45. Ligtenberg P, Hoekstra J, Bol E, Zonderland M, Erkelens D. Effects of physical training on metabolic control in elderly type 2 diabetes mellitus patients. Clin Sci. 1997;93(2):127–35.

    Article  CAS  Google Scholar 

  46. Middlebrooke A, Elston L, Macleod K, Mawson D, Ball C, Shore A, et al. Six months of aerobic exercise does not improve microvascular function in type 2 diabetes mellitus. Diabetologia. 2006;49(10):2263–71.

    Article  CAS  PubMed  Google Scholar 

  47. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro-and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69–76.

    Article  CAS  PubMed  Google Scholar 

  48. Negri C, Bacchi E, Morgante S, Soave D, Marques A, Menghini E, et al. Supervised walking groups to increase physical activity in type 2 diabetic patients. Diabetes Care. 2010;33(11):2333–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nuttamonwarakul A, Amatyakul S, Suksom D. Twelve weeks of aqua-aerobic exercise improve health-related physical fitness and glycemic control in elderly patients with type 2 diabetes. J Exerc Physiol. 2012;15(2):64–71.

    Google Scholar 

  50. Sabag A, Way KL, Sultana RN, Keating SE, Gerofi JA, Chuter VH, et al. The effect of a novel low-volume aerobic exercise intervention on liver fat in type 2 diabetes: a randomized controlled trial. Diabetes Care. 2020;43(10):2371–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sentinelli F, La Cava V, Serpe R, Boi A, Incani M, Manconi E, et al. Positive effects of Nordic Walking on anthropometric and metabolic variables in women with type 2 diabetes mellitus. Sci Sports. 2015;30(1):25–32.

    Article  Google Scholar 

  52. Shakil-Ur-Rehman S, Karimi H, Gillani SA. Effects of supervised structured aerobic exercise training program on fasting blood glucose level, plasma insulin level, glycemic control, and insulin resistance in type 2 diabetes mellitus. Pak J Med Sci. 2017;33(3):576–80.

    PubMed  PubMed Central  Google Scholar 

  53. Shenoy S, Arora E, Jaspal S. Effects of progressive resistance training and aerobic exercise on type 2 diabetics in Indian population. Int J Diabetes Metab. 2009;17(1):27–30.

    Google Scholar 

  54. Tomar RH, Hashim MH, Al-Qahtani MH. Effects of a 12-week aerobic training on glycemic control in type 2 diabetes mellitus male patients. Saudi Med J. 2013;34(7):757–9.

    PubMed  Google Scholar 

  55. Yan H, Prista A, Ranadive SM, Damasceno A, Caupers P, Kanaley JA, et al. Effect of aerobic training on glucose control and blood pressure in T2DDM East African males. Int Sch Res Not. 2014;2014.

  56. Yavari A, Najafipoor F, Aliasgarzadeh A, Niafar M, Mobasseri M. Effect of aerobic exercise, resistance training or combined training on glycaemic control and cardiovascular risk factors in patients with type 2 diabetes. Biol Sport. 2012;29(2):135.

    Article  Google Scholar 

  57. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.

    Article  PubMed  Google Scholar 

  58. Reid R, Tulloch H, Sigal R, Kenny G, Fortier M, McDonnell L, et al. Effects of aerobic exercise, resistance exercise or both, on patient-reported health status and well-being in type 2 diabetes mellitus: a randomised trial. Diabetologia. 2010;53(4):632–40.

    Article  CAS  PubMed  Google Scholar 

  59. Delevatti RS, Bracht CG, Lisboa SDC, Costa RR, Marson EC, Netto N, et al. The Role of aerobic training variables progression on glycemic control of patients with Type 2 Diabetes: a systematic review with meta-analysis. Sports Med Open. 2019;5(1):1–17.

    Article  Google Scholar 

  60. Qiu S, Cai X, Sun Z, Zügel M, Steinacker JM, Schumann U. Aerobic interval training and cardiometabolic health in patients with type 2 diabetes: a meta-analysis. Front Physiol. 2017;8:957.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liubaoerjijin Y, Terada T, Fletcher K, Boulé NG. Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetol. 2016;53(5):769–81.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez JS, Tanenbaum ML, Commissariat PV. Psychosocial factors in medication adherence and diabetes self-management: implications for research and practice. Am Psychol. 2016;71(7):539.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jaeschke R, Singer J, Guyatt GH. Measurement of health status: ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–15.

    Article  CAS  PubMed  Google Scholar 

  65. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  66. Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Shab-Bidar.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

Ahmad Jayedi, Alireza Emadi, and Sakineh Shab-bidar declare that they have no conflicts of interest.

Author Contributions

AJ contributed to the study conception, literature search, data extraction, data analysis, and manuscript drafting. AE contributed to the literature search, data extraction, and manuscript drafting. SS-B contributed to study conception and manuscript drafting. SS-B critically revised the manuscript. All authors take full responsibility for the analyses and interpretation of the report. SS-B is the guarantor. All authors read and approved the final manuscript.

Availability of data and material

Available upon request.

Code availability

Available upon request.

Ethics approval

Not required.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayedi, A., Emadi, A. & Shab-Bidar, S. Dose-Dependent Effect of Supervised Aerobic Exercise on HbA1c in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Sports Med 52, 1919–1938 (2022). https://doi.org/10.1007/s40279-022-01673-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01673-4

Navigation