Skip to main content
Log in

Medical Options for the Adjuvant Treatment and Management of Pediatric Melanoma

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

A Correction to this article was published on 25 May 2019

This article has been updated

Abstract

Although melanoma is a rare diagnosis in the pediatric population, advances in the management of adults with melanoma offer the prospect of promising therapeutic options for children. At this time, medical management is not considered curative but may reduce the risk of recurrence or prolong survival. Surgical management remains the mainstay of treatment. Medical therapy of pediatric melanoma is not thought to have a role for in situ, early-stage, or localized disease, but adjuvant therapy may have a role in improving the prognosis of patients with positive sentinel lymph node biopsy (SLNB), spread beyond the regional lymph node basin, metastatic disease, or recurrent disease. Medical treatment options include immunotherapies, particularly checkpoint inhibitors, and targeted therapies, which have provided improved toxicity profiles compared with traditional chemotherapy regimens in the setting of advanced disease. There is a growing body of pediatric-specific data relevant to the use of adjuvant therapies for advanced melanoma in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 May 2019

    Study NCT01519323 (A study of vemurafenib in pediatric patients with stage IIIC or stage IV melanoma harbouring BRAFV600 mutations) was included in a table listing ongoing clinical trials of adjuvant therapies for pediatric melanoma (Table 1) in error. The study was in fact closed early due to low enrollment as correctly noted in section 4 of the article.

References

  1. U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, based on November 2017 submission data (1999–2015): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; www.cdc.gov/cancer/dataviz, June 2018.

  2. Austin MT, et al. Melanoma incidence rises for children and adolescents: an epidemiologic review of pediatric melanoma in the United States. J Pediatr Surg. 2013;48(11):2207–13.

    Article  PubMed  Google Scholar 

  3. Campbell LB, et al. Melanoma incidence in children and adolescents: decreasing trends in the United States. J Pediatr. 2015;166(6):1505–13.

    Article  PubMed  Google Scholar 

  4. Strouse JJ, et al. Pediatric melanoma: risk factor and survival analysis of the surveillance, epidemiology and end results database. J Clin Oncol. 2005;23(21):4735–41.

    Article  PubMed  Google Scholar 

  5. Lange JR, et al. Melanoma in children and teenagers: an analysis of patients from the National Cancer Data Base. J Clin Oncol. 2007;25(11):1363–8.

    Article  PubMed  Google Scholar 

  6. Krengel S, Hauschild A, Schäfer T. Melanoma risk in congenital melanocytic naevi: a systematic review. Br J Dermatol. 2006;155(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Pappo AS. Melanoma in children and adolescents. Eur J Cancer. 2003;39(18):2651–61.

    Article  CAS  PubMed  Google Scholar 

  8. Ward EM, et al. Industries and cancer. Cancer Causes Control. 1997;8(3):356–70.

    Article  CAS  PubMed  Google Scholar 

  9. Paradela S, et al. Prognostic factors for melanoma in children and adolescents: a clinicopathologic, single-center study of 137 patients. Cancer. 2010;116(18):4334–44.

    Article  PubMed  Google Scholar 

  10. Bartenstein DW, et al. Contrasting features of childhood and adolescent melanomas. Pediatr Dermatol. 2018;35(3):354–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cordoro KM, et al. Pediatric melanoma: results of a large cohort study and proposal for modified ABCD detection criteria for children. J Am Acad Dermatol. 2013;68(6):913–25.

    Article  PubMed  Google Scholar 

  12. Pappo AS. Pediatric melanoma: the whole (genome) story. Am Soc Clin Oncol Educ Book. 2014; p. e432-34355.

  13. Barnhill R, et al. Malignant Spitz tumor and Spitz Naevus. In: Elder DE, Massi D, Scolyer R, Willemze R, editors. WHO classification of tumours, Fourth edition. Geneva: International Agency for Research on Cancer; 2018. pp. 46–51.

    Google Scholar 

  14. Paradela S, et al. Spitzoid melanoma in children: clinicopathological study and application of immunohistochemistry as an adjunct diagnostic tool. J Cutan Pathol. 2009;36(7):740–52.

    Article  PubMed  Google Scholar 

  15. Celebi JT, Messina JL. Challenging melanocytic neoplasms: spitzoid melanoma vs. spitz nevus. Melanoma: Translational Research and Emerging Therapies, 2008; p. 27.

  16. Vourc’h-Jourdain M, Martin L, Barbarot S. Large congenital melanocytic nevi: therapeutic management and melanoma risk: a systematic review. J Am Acad Dermatol. 2013;68(3):493–498. e14.

  17. Bett BJ. Large or multiple congenital melanocytic nevi: occurrence of cutaneous melanoma in 1008 persons. J Am Acad Dermatol. 2005;52(5):793–7.

    Article  PubMed  Google Scholar 

  18. Bahrami A, Barnhill RL. Pathology and genomics of pediatric melanoma: a critical reexamination and new insights. Pediatr Blood Cancer. 2018;65(2):e26792.

    Article  CAS  Google Scholar 

  19. Lu C, et al. The genomic landscape of childhood and adolescent melanoma. J Investig Dermatol. 2015;135(3):816–23.

    Article  CAS  PubMed  Google Scholar 

  20. Hodis E, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim J, et al. Sentinel lymph node biopsy is a prognostic measure in pediatric melanoma. J Pediatr Surg. 2016;51(6):986–90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Faries MB, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 2017;376(23):2211–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Palmer PE, et al. Complications in the surgical treatment of pediatric melanoma. J Pediatr Surg. 2013;48(6):1249–53.

    Article  PubMed  Google Scholar 

  24. Wrightson WR, et al. Complications associated with sentinel lymph node biopsy for melanoma. Ann Surg Oncol. 2003;10(6):676–80.

    Article  PubMed  Google Scholar 

  25. Kirkwood JM, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  26. Kirkwood JM, et al. High-and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol. 2000;18(12):2444–58.

    Article  CAS  PubMed  Google Scholar 

  27. Kirkwood JM, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80.

    Article  CAS  PubMed  Google Scholar 

  28. Mocellin S, et al. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010;102(7):493–501.

    Article  CAS  PubMed  Google Scholar 

  29. Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med. 2004;351(10):998–1012.

    Article  CAS  PubMed  Google Scholar 

  30. Cormier JN, et al. Cost effectiveness of adjuvant interferon in node-positive melanoma. J Clin Oncol. 2007;25(17):2442–8.

    Article  PubMed  Google Scholar 

  31. Messori A, et al. A retrospective cost-effectiveness analysis of interferon as adjuvant therapy in high-risk resected cutaneous melanoma. Eur J Cancer. 1997;33(9):1373–9.

    Article  CAS  PubMed  Google Scholar 

  32. Navid F, et al. Feasibility of pegylated interferon in children and young adults with resected high-risk melanoma. Pediatr Blood Cancer. 2016;63(7):1207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Navid F, et al. The feasibility of adjuvant interferon α-2b in children with high-risk melanoma. Cancer. 2005;103(4):780–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chao MM, et al. High-risk surgically resected pediatric melanoma and adjuvant interferon therapy. Pediatr Blood Cancer. 2005;44(5):441–8.

    Article  PubMed  Google Scholar 

  35. Shah NC, et al. Use of sentinel lymph node biopsy and high-dose interferon in pediatric patients with high-risk melanoma: the Hospital for Sick Children experience. J Pediatr Hematol Oncol. 2006;28(8):496–500.

    Article  PubMed  Google Scholar 

  36. He X-H, Shaw P-C, Tam S-C. Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci. 1999;65(4):355–68.

    Article  CAS  PubMed  Google Scholar 

  37. Glue P, et al. Pegylated interferon-α2b: Pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin Pharmacol Therap. 2000;68(5):556–67.

    Article  CAS  Google Scholar 

  38. Eggermont AM, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. The Lancet. 2008;372(9633):117–26.

    Article  CAS  Google Scholar 

  39. Lindsay KL, et al. A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology. 2001;34(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  40. Bukowski RM, et al. Treating cancer with PEG intron. Cancer. 2002;95(2):389–96.

    Article  CAS  PubMed  Google Scholar 

  41. ClinicalTrials.gov. Phase II Study Incorporating Pegylated Interferon In the Treatment For Children With High-Risk Melanoma. 2017; Available from: https://clinicaltrials.gov/ct2/show/NCT00539591.

  42. Rosenberg SA et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. JNCI J Natl Cancer Inst 1993;85(8):622–632.

  43. Atkins MB, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–2105.

    Article  CAS  PubMed  Google Scholar 

  44. Ribeiro RC, et al. Continuous infusion of interleukin-2 in children with refractory malignancies. Cancer. 1993;72(2):623–8.

    Article  CAS  PubMed  Google Scholar 

  45. Bauer M, et al. A phase II trial of human recombinant lnterleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkin’s lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma. A childrens cancer group study. Cancer. 1995;75(12):2959–65.

    Article  CAS  PubMed  Google Scholar 

  46. Yamane BH et al. The development of antibody-IL-2 based immunotherapy with hu14. 18-IL2 (EMD-273063) in melanoma and neuroblastoma. Exp Opin Investig Drugs 2009;18(7):991–1000.

  47. Osenga KL et al. A phase I clinical trial of the hu14. 18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res 2006;12(6):1750–1759.

  48. Eggermont AM, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.

    Article  CAS  PubMed  Google Scholar 

  49. Merchant M et al. Phase 1 clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res 2015;p. clincanres. 0491.2015.

  50. Geoerger B, et al. Phase II study of ipilimumab in adolescents with unresectable stage III or IV malignant melanoma. Eur J Cancer. 2017;86:358–63.

    Article  CAS  PubMed  Google Scholar 

  51. Topalian SL, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis KL et al. ADVL1412: Initial results of a phase I/II study of nivolumab and ipilimumab in pediatric patients with relapsed/refractory solid tumors—A COG study. 2017, American Society of Clinical Oncology.

  54. Robert C, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. The Lancet. 2014;384(9948):1109–17.

    Article  CAS  Google Scholar 

  55. Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  56. ClinicalTrials.gov, A Study of Pembrolizumab (MK-3475) in Pediatric Participants With an Advanced Solid Tumor or Lymphoma (MK-3475-051/KEYNOTE-051). 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT02332668.

  57. Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. The Lancet. 2014;383(9919):816–27.

    Article  CAS  Google Scholar 

  58. Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949.

    Article  CAS  PubMed  Google Scholar 

  59. Pollock PM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2002;33(1):19.

    Article  CAS  PubMed  Google Scholar 

  60. Curtin JA, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  61. Chapman PB, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Solit DB, Rosen N. Resistance to BRAF inhibition in melanomas. N Engl J Med. 2011;364(8):772–4.

    Article  CAS  PubMed  Google Scholar 

  63. Flaherty KT, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carnahan J, et al. Selective and potent Raf inhibitors paradoxically stimulate normal cell proliferation and tumor growth. Mol Cancer Therap. 2010;9(8):2399–410.

    Article  CAS  Google Scholar 

  65. Robert C, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wing EJ, et al. Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor alpha and interferon in cancer patients. Blood. 1989;73(3):643–6.

    CAS  PubMed  Google Scholar 

  67. Hayes FA, Green AA. Malignant melanoma in childhood: clinical course and response to chemotherapy. J Clin Oncol. 1984;2(11):1229–34.

    Article  CAS  PubMed  Google Scholar 

  68. Boddie AW, Cangir A. Adjuvant and neoadjuvant chemotherapy with dacarbazine in high-risk childhood melanoma. Cancer. 1987;60(8):1720–3.

    Article  PubMed  Google Scholar 

  69. Peter C, et al. Hyperthermic isolated regional perfusion in the treatment of extremity melanoma in children and adolescents. Cancer. 1989;63:199–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena B. Hawryluk.

Ethics declarations

Funding

This work was funded by the Dermatology Foundation and the Society for Pediatric Dermatology (EBH).

Conflicts of Interest

Elena B. Hawryluk’s spouse has received stock from Foundation Medicine Inc. and salary and stock from Gritstone Oncology. Elena B. Hawryluk has received authorship honorarium from UpToDate, Inc. Haya S. Raef and Alison M. Friedmann, MD, MSc, have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raef, H.S., Friedmann, A.M. & Hawryluk, E.B. Medical Options for the Adjuvant Treatment and Management of Pediatric Melanoma. Pediatr Drugs 21, 71–79 (2019). https://doi.org/10.1007/s40272-019-00326-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00326-w

Navigation