Skip to main content
Log in

Antihypertensive Drugs and Risk of Bone Fractures

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Antihypertensive drugs are among the most documented regimens worldwide with an overall survival and cardioprotective benefit. However, there is evidence that they cause symptoms of orthostatic hypotension (i.e., dizziness and syncope) placing patients at risk for falls and fall-related injuries such as bone fractures. Moreover, it seems that they might impact bone metabolism and architecture impairing bone health. The aim of this review was to summarize the accumulative literature exploring any potential association between several antihypertensive medications including diuretics, renin-angiotensin-aldosterone system inhibitors, beta-blockers and calcium channel blockers and the risk of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Thorne K, Johansen A, Akbari A, Williams JG, Roberts SE. The impact of social deprivation on mortality following hip fracture in England and Wales: a record linkage study. Osteoporos Int. 2016;27(9):2727–37. https://doi.org/10.1007/s00198-016-3608-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–7. https://doi.org/10.1016/S0140-6736(02)08657-9.

    Article  PubMed  Google Scholar 

  3. Court-Brown CM, Clement ND, Duckworth AD, Biant LC, McQueen MM. The changing epidemiology of fall-related fractures in adults. Injury. 2017;48(4):819–24. https://doi.org/10.1016/j.injury.2017.02.021.

    Article  CAS  PubMed  Google Scholar 

  4. Tinetti ME, Kumar C. The patient who falls: “It’s always a trade-off.” JAMA. 2010;303(3):258–66. https://doi.org/10.1001/jama.2009.2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghosh M, Majumdar SR. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine. 2014;46(3):397–405. https://doi.org/10.1007/s12020-014-0167-4.

    Article  CAS  PubMed  Google Scholar 

  6. Grassi G. Sympathomodulatory effects of antihypertensive drug treatment. Am J Hypertens. 2016;29(6):665–75. https://doi.org/10.1093/ajh/hpw012.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao L, Carmo LS, Foss JD, Chen W, Harrison DG. Sympathetic enhancement of memory T-cell homing and hypertension sensitization. Circ Res. 2020;126(6):708–21. https://doi.org/10.1161/CIRCRESAHA.119.314758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17. https://doi.org/10.1016/s0092-8674(02)01049-8.

    Article  CAS  PubMed  Google Scholar 

  9. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67. https://doi.org/10.1016/S0140-6736(15)01225-8.

    Article  PubMed  Google Scholar 

  10. Tinetti ME, Han L, Lee DS, McAvay GJ, Peduzzi P, Gross CP, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174(4):588–95. https://doi.org/10.1001/jamainternmed.2013.14764.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Callisaya ML, Sharman JE, Close J, Lord SR, Srikanth VK. Greater daily defined dose of antihypertensive medication increases the risk of falls in older people–a population-based study. J Am Geriatr Soc. 2014;62(8):1527–33. https://doi.org/10.1111/jgs.12925.

    Article  PubMed  Google Scholar 

  12. Woolcott JC, Richardson KJ, Wiens MO, Patel B, Marin J, Khan KM, et al. Meta-analysis of the impact of 9 medication classes on falls in elderly persons. Arch Intern Med. 2009;169(21):1952–60. https://doi.org/10.1001/archinternmed.2009.357.

    Article  PubMed  Google Scholar 

  13. Kahlaee HR, Latt MD, Schneider CR. Association between chronic or acute use of antihypertensive class of medications and falls in older adults. A systematic review and meta-analysis. Am J Hypertens. 2018;31(4):467–79. https://doi.org/10.1093/ajh/hpx189.

    Article  CAS  PubMed  Google Scholar 

  14. Lim LS, Fink HA, Blackwell T, Taylor BC, Ensrud KE. Loop diuretic use and rates of hip bone loss and risk of falls and fractures in older women. J Am Geriatr Soc. 2009;57(5):855–62. https://doi.org/10.1111/j.1532-5415.2009.02195.x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williamson JD, Supiano MA, Pajewski NM. Intensive vs standard blood pressure control for older adults-reply. JAMA. 2016;316(18):1923. https://doi.org/10.1001/jama.2016.14936.

    Article  PubMed  Google Scholar 

  16. Barry EL, Gesek FA, Kaplan MR, Hebert SC, Friedman PA. Expression of the sodium-chloride cotransporter in osteoblast-like cells: effect of thiazide diuretics. Am J Physiol. 1997;272(1 Pt 1):C109–16. https://doi.org/10.1152/ajpcell.1997.272.1.C109.

    Article  CAS  PubMed  Google Scholar 

  17. Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163–70. https://doi.org/10.1359/JBMR.051003.

    Article  CAS  PubMed  Google Scholar 

  18. Barber J, McKeever TM, McDowell SE, Clayton JA, Ferner RE, Gordon RD, et al. A systematic review and meta-analysis of thiazide-induced hyponatraemia: time to reconsider electrolyte monitoring regimens after thiazide initiation? Br J Clin Pharmacol. 2015;79(4):566–77. https://doi.org/10.1111/bcp.12499.

    Article  CAS  PubMed  Google Scholar 

  19. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61. https://doi.org/10.1056/NEJMra053077.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao F, Qu X, Zhai Z, Jiang C, Li H, Liu X, et al. Association between loop diuretic use and fracture risk. Osteoporos Int. 2015;26(2):775–84. https://doi.org/10.1007/s00198-014-2979-8.

    Article  CAS  PubMed  Google Scholar 

  21. Corrao G, Mazzola P, Monzio Compagnoni M, Rea F, Merlino L, Annoni G, et al. Antihypertensive medications, loop diuretics, and risk of hip fracture in the elderly: A population-based cohort study of 81,617 Italian patients newly treated between 2005 and 2009. Drugs Aging. 2015;32(11):927–36. https://doi.org/10.1007/s40266-015-0306-5.

    Article  CAS  PubMed  Google Scholar 

  22. Torstensson M, Hansen AH, Leth-Moller K, Jorgensen TS, Sahlberg M, Andersson C, et al. Danish register-based study on the association between specific cardiovascular drugs and fragility fractures. BMJ Open. 2015;5(12): e009522. https://doi.org/10.1136/bmjopen-2015-009522.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin SM, Yang SH, Wang CY, Huang HK. Association between diuretic use and the risk of vertebral fracture after stroke: a population-based retrospective cohort study. BMC Musculoskelet Disord. 2019;20(1):96. https://doi.org/10.1186/s12891-019-2471-x.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Charkos TG, Liu Y, Jin L, Yang S. Thiazide use and fracture risk: an updated Bayesian meta-analysis. Sci Rep. 2019;9(1):19754. https://doi.org/10.1038/s41598-019-56108-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Su K, Sang W, Li L, Ma S. Thiazide diuretics and the incidence of osteoporotic fracture: a systematic review and meta-analysis of cohort studies. Front Pharmacol. 2019;10:1364. https://doi.org/10.3389/fphar.2019.01364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langerhuizen DWG, Verweij LPE, van der Wouden JC, Kerkhoffs G, Janssen SJ. Antihypertensive drugs demonstrate varying levels of hip fracture risk: a systematic review and meta-analysis. Injury. 2021. https://doi.org/10.1016/j.injury.2021.09.036.

    Article  PubMed  Google Scholar 

  27. Barzilay JI, Davis BR, Pressel SL, Ghosh A, Puttnam R, Margolis KL, et al. The impact of antihypertensive medications on bone mineral density and fracture risk. Curr Cardiol Rep. 2017;19(9):76. https://doi.org/10.1007/s11886-017-0888-0.

    Article  PubMed  Google Scholar 

  28. Taipale H, Rysa J, Hukkanen J, Koponen M, Tanskanen A, Tiihonen J, et al. Long-term thiazide use and risk of low-energy fractures among persons with Alzheimer’s disease-nested case-control study. Osteoporos Int. 2019;30(7):1481–9. https://doi.org/10.1007/s00198-019-04957-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Castrillon JL, Silva J, Justo I, Sanz A, Martin-Luquero M, Igea R, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003;16(6):453–9. https://doi.org/10.1016/s0895-7061(03)00845-8.

    Article  CAS  PubMed  Google Scholar 

  30. Hagiwara H, Hiruma Y, Inoue A, Yamaguchi A, Hirose S. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J Endocrinol. 1998;156(3):543–50. https://doi.org/10.1677/joe.0.1560543.

    Article  CAS  PubMed  Google Scholar 

  31. Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin-angiotensin system. Br J Pharmacol. 2010;159(8):1672–80. https://doi.org/10.1111/j.1476-5381.2010.00651.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22(7):2465–75. https://doi.org/10.1096/fj.07-098954.

    Article  CAS  PubMed  Google Scholar 

  33. Mo C, Ke J, Zhao D, Zhang B. Role of the renin-angiotensin-aldosterone system in bone metabolism. J Bone Miner Metab. 2020;38(6):772–9. https://doi.org/10.1007/s00774-020-01132-y.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng YZ, Huang ZZ, Shen ZF, Wu HY, Peng JX, Waye MM, et al. ACE inhibitors and the risk of fractures: a meta-analysis of observational studies. Endocrine. 2017;55(3):732–40. https://doi.org/10.1007/s12020-016-1201-5.

    Article  CAS  PubMed  Google Scholar 

  35. Carbone LD, Vasan S, Prentice RL, Harshfield G, Haring B, Cauley JA, et al. The renin-angiotensin aldosterone system and osteoporosis: findings from the Women’s Health Initiative. Osteoporos Int. 2019;30(10):2039–56. https://doi.org/10.1007/s00198-019-05041-3.

    Article  CAS  PubMed  Google Scholar 

  36. Kunutsor SK, Blom AW, Whitehouse MR, Kehoe PG, Laukkanen JA. Renin-angiotensin system inhibitors and risk of fractures: a prospective cohort study and meta-analysis of published observational cohort studies. Eur J Epidemiol. 2017;32(11):947–59. https://doi.org/10.1007/s10654-017-0285-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens. 2006;24(3):581–9. https://doi.org/10.1097/01.hjh.0000203845.26690.cb.

    Article  CAS  PubMed  Google Scholar 

  38. Hargrove JL, Golightly YM, Pate V, Casteel CH, Loehr LR, Marshall SW, et al. Initiation of antihypertensive monotherapy and incident fractures among Medicare beneficiaries. Inj Epidemiol. 2017;4(1):27. https://doi.org/10.1186/s40621-017-0125-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bokrantz T, Schioler L, Bostrom KB, Kahan T, Mellstrom D, Ljungman C, et al. Antihypertensive drug classes and the risk of hip fracture: results from the Swedish primary care cardiovascular database. J Hypertens. 2020;38(1):167–75. https://doi.org/10.1097/HJH.0000000000002245.

    Article  CAS  PubMed  Google Scholar 

  40. Kao YT, Huang CY, Fang YA, Liu JC. The association between renin angiotensin aldosterone system blockers and future osteoporotic fractures in a hypertensive population—a population-based cohort study in Taiwan. Int J Cardiol. 2020;305:147–53. https://doi.org/10.1016/j.ijcard.2019.12.069.

    Article  PubMed  Google Scholar 

  41. Shea C, Witham MD. Association between the use of angiotensin-blocking medications with hip fracture and death in older people. J Frailty Aging. 2020;9(2):107–10. https://doi.org/10.14283/jfa.2019.38.

    Article  PubMed  Google Scholar 

  42. Peters R, Beckett N, Burch L, de Vernejoul MC, Liu L, Duggan J, et al. The effect of treatment based on a diuretic (indapamide) +/- ACE inhibitor (perindopril) on fractures in the hypertension in the very elderly trial (HYVET). Age Ageing. 2010;39(5):609–16. https://doi.org/10.1093/ageing/afq071.

    Article  PubMed  Google Scholar 

  43. Schmitt CP, Obry J, Feneberg R, Veldhuis JD, Mehls O, Ritz E, et al. Beta1-adrenergic blockade augments pulsatile PTH secretion in humans. J Am Soc Nephrol. 2003;14(12):3245–50. https://doi.org/10.1097/01.asn.0000101240.47747.7f.

    Article  CAS  PubMed  Google Scholar 

  44. Togari A, Arai M, Kondo A. The role of the sympathetic nervous system in controlling bone metabolism. Expert Opin Ther Targets. 2005;9(5):931–40. https://doi.org/10.1517/14728222.9.5.931.

    Article  CAS  PubMed  Google Scholar 

  45. Graham S, Hammond-Jones D, Gamie Z, Polyzois I, Tsiridis E, Tsiridis E. The effect of beta-blockers on bone metabolism as potential drugs under investigation for osteoporosis and fracture healing. Expert Opin Investig Drugs. 2008;17(9):1281–99. https://doi.org/10.1517/13543784.17.9.1281.

    Article  CAS  PubMed  Google Scholar 

  46. Butt DA, Mamdani M, Austin PC, Tu K, Gomes T, Glazier RH. The risk of hip fracture after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012;172(22):1739–44. https://doi.org/10.1001/2013.jamainternmed.469.

    Article  PubMed  Google Scholar 

  47. Choi HJ, Park C, Lee YK, Ha YC, Jang S, Shin CS. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–7. https://doi.org/10.1016/j.ijcard.2015.01.072.

    Article  PubMed  Google Scholar 

  48. Wiens M, Etminan M, Gill SS, Takkouche B. Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med. 2006;260(4):350–62. https://doi.org/10.1111/j.1365-2796.2006.01695.x.

    Article  CAS  PubMed  Google Scholar 

  49. Yang S, Nguyen ND, Eisman JA, Nguyen TV. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone. 2012;51(5):969–74. https://doi.org/10.1016/j.bone.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  50. Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. beta-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121–9. https://doi.org/10.1007/s00198-013-2498-z.

    Article  CAS  PubMed  Google Scholar 

  51. Ruths S, Bakken MS, Ranhoff AH, Hunskaar S, Engesaeter LB, Engeland A. Risk of hip fracture among older people using antihypertensive drugs: a nationwide cohort study. BMC Geriatr. 2015;15:153. https://doi.org/10.1186/s12877-015-0154-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zaidi M, MacIntyre I, Datta H. Intracellular calcium in the control of osteoclast function. II. Paradoxical elevation of cytosolic free calcium by verapamil. Biochem Biophys Res Commun. 1990;167(2):807–12. https://doi.org/10.1016/0006-291x(90)92097-j.

    Article  CAS  PubMed  Google Scholar 

  53. Guggino SE, Wagner JA, Snowman AM, Hester LD, Sacktor B, Snyder SH. Phenylalkylamine-sensitive calcium channels in osteoblast-like osteosarcoma cells. Characterization by ligand binding and single channel recordings. J Biol Chem. 1988;263(21):10155–61.

    Article  CAS  Google Scholar 

  54. Zofkova I, Kancheva RL. The effect of nifedipine on serum parathyroid hormone and calcitonin in postmenopausal women. Life Sci. 1995;57(11):1087–96. https://doi.org/10.1016/0024-3205(95)02054-m.

    Article  CAS  PubMed  Google Scholar 

  55. Takaoka S, Yamaguchi T, Tanaka K, Morita M, Yamamoto M, Yamauchi M, et al. Fracture risk is increased by the complication of hypertension and treatment with calcium channel blockers in postmenopausal women with type 2 diabetes. J Bone Miner Metab. 2013;31(1):102–7. https://doi.org/10.1007/s00774-012-0389-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Velliou.

Ethics declarations

Authors' Contributions

All authors contributed equally to this work.

Funding

No external funding was used in the preparation of this manuscript

Conflict of Interest

M. Velliou, E. Sanidas, A. Zografou, D. Papadopoulos, N. Dalianis, J. Barbetseas declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Availability of Data and Material

Not applicable

Code Availability

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velliou, M., Sanidas, E., Zografou, A. et al. Antihypertensive Drugs and Risk of Bone Fractures. Drugs Aging 39, 551–557 (2022). https://doi.org/10.1007/s40266-022-00955-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-00955-w

Navigation