Skip to main content
Log in

A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hamner MB, Frueh BC, Ulmer HG, Arana GW. Psychotic features and illness severity in combat veterans with chronic posttraumatic stress disorder. Biol Psychiatry. 1999;45(7):846–52. https://doi.org/10.1016/s0006-3223(98)00301-1.

    Article  CAS  PubMed  Google Scholar 

  2. Davis LL, Schein J, Cloutier M, Gagnon-Sanschagrin P, Maitland J, Urganus A, et al. The economic burden of posttraumatic stress disorder in the United States from a societal perspective. J Clin Psychiatry. 2022. https://doi.org/10.4088/JCP.21m14116.

    Article  PubMed  Google Scholar 

  3. Bajor LA, Balsara C, Osser DN. An evidence-based approach to psychopharmacology for posttraumatic stress disorder (PTSD) - 2022 update. Psychiatry Res. 2022;317: 114840. https://doi.org/10.1016/j.psychres.2022.114840.

    Article  CAS  PubMed  Google Scholar 

  4. Brewin CR, Holmes EA. Psychological theories of posttraumatic stress disorder. Clin Psychol Rev. 2003;23(3):339–76. https://doi.org/10.1016/s0272-7358(03)00033-3.

    Article  PubMed  Google Scholar 

  5. Bisson JI. Psychological and social theories of post-traumatic stress disorder. Psychiatry. 2009;8(8):290–2.

    Article  Google Scholar 

  6. Weston CS. Posttraumatic stress disorder: a theoretical model of the hyperarousal subtype. Front Psychiatry. 2014;5:37. https://doi.org/10.3389/fpsyt.2014.00037.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abdallah CG, Averill LA, Akiki TJ, Raza M, Averill CL, Gomaa H, et al. The neurobiology and pharmacotherapy of posttraumatic stress disorder. Annu Rev Pharmacol Toxicol. 2019;59:171–89. https://doi.org/10.1146/annurev-pharmtox-010818-021701.

    Article  CAS  PubMed  Google Scholar 

  8. Stojek MM, McSweeney LB, Rauch SAM. Neuroscience informed prolonged exposure practice: increasing efficiency and efficacy through mechanisms. Front Behav Neurosci. 2018;12:281. https://doi.org/10.3389/fnbeh.2018.00281.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Careaga MBL, Girardi CEN, Suchecki D. Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neurosci Biobehav Rev. 2016;71:48–57. https://doi.org/10.1016/j.neubiorev.2016.08.023.

    Article  PubMed  Google Scholar 

  10. Shechner T, Hong M, Britton JC, Pine DS, Fox NA. Fear conditioning and extinction across development: evidence from human studies and animal models. Biol Psychol. 2014;100:1–12. https://doi.org/10.1016/j.biopsycho.2014.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry. 2006;60(4):376–82. https://doi.org/10.1016/j.biopsych.2006.06.004.

    Article  PubMed  Google Scholar 

  12. Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res. 2008;167:171–86. https://doi.org/10.1016/S0079-6123(07)67012-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skolariki K, Vrahatis AG, Krokidis MG, Exarchos TP, Vlamos P. Assessing and modelling of post-traumatic stress disorder using molecular and functional biomarkers. Biology (Basel). 2023. https://doi.org/10.3390/biology12081050.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14(6):417–28. https://doi.org/10.1038/nrn3492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem. 2014;113:3–18. https://doi.org/10.1016/j.nlm.2013.11.014.

    Article  PubMed  Google Scholar 

  16. Maeng LY, Milad MR. Post-traumatic stress disorder: the relationship between the fear response and chronic stress. Chronic Stress (Thousand Oaks). 2017;1:2470547017713297. https://doi.org/10.1177/2470547017713297.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47(13):2260–74. https://doi.org/10.1017/S0033291717000708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52(12):1048–60. https://doi.org/10.1001/archpsyc.1995.03950240066012.

    Article  CAS  PubMed  Google Scholar 

  19. Harnett NG, Goodman AM, Knight DC. PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp Neurol. 2020;330: 113331. https://doi.org/10.1016/j.expneurol.2020.113331.

    Article  CAS  PubMed  Google Scholar 

  20. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25. https://doi.org/10.1038/nrn3381.

    Article  CAS  PubMed  Google Scholar 

  21. Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med. 2012;74(9):904–11. https://doi.org/10.1097/PSY.0b013e318273bf33.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brown VM, LaBar KS, Haswell CC, Gold AL, Mid-Atlantic MW, McCarthy G, et al. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology. 2014;39(2):351–9. https://doi.org/10.1038/npp.2013.197.

    Article  PubMed  Google Scholar 

  23. Ravindran LN, Stein MB. Pharmacotherapy of PTSD: premises, principles, and priorities. Brain Res. 2009;1293:24–39. https://doi.org/10.1016/j.brainres.2009.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grimm S, Keicher C, Paret C, Niedtfeld I, Beckmann C, Mennes M, et al. The effects of transient receptor potential cation channel inhibition by BI 1358894 on cortico-limbic brain reactivity to negative emotional stimuli in major depressive disorder. Eur Neuropsychopharmacol. 2022;65:44–51. https://doi.org/10.1016/j.euroneuro.2022.10.009.

    Article  CAS  PubMed  Google Scholar 

  25. Vermetten E, Bremner JD. Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Depress Anxiety. 2002;16(1):14–38. https://doi.org/10.1002/da.10017.

    Article  PubMed  Google Scholar 

  26. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769–87. https://doi.org/10.1038/nrn3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress Anxiety. 2016;33(7):592–605. https://doi.org/10.1002/da.22478.

    Article  PubMed  Google Scholar 

  28. Raskind MA, Peskind ER, Chow B, Harris C, Davis-Karim A, Holmes HA, et al. Trial of prazosin for post-traumatic stress disorder in military veterans. N Engl J Med. 2018;378(6):507–17. https://doi.org/10.1056/NEJMoa1507598.

    Article  CAS  PubMed  Google Scholar 

  29. Reist C, Streja E, Tang CC, Shapiro B, Mintz J, Hollifield M. Prazosin for treatment of post-traumatic stress disorder: a systematic review and meta-analysis. CNS Spectr. 2021;26(4):338–44. https://doi.org/10.1017/S1092852920001121.

    Article  PubMed  Google Scholar 

  30. Bertolini F, Robertson L, Bisson JI, Meader N, Churchill R, Ostuzzi G, et al. Early pharmacological interventions for universal prevention of post-traumatic stress disorder (PTSD). Cochrane Database Syst Rev. 2022;2(2):CD013443. https://doi.org/10.1002/14651858.CD013443.pub2.

    Article  PubMed  Google Scholar 

  31. Brunet A, Thomas E, Saumier D, Ashbaugh AR, Azzoug A, Pitman RK, et al. Trauma reactivation plus propranolol is associated with durably low physiological responding during subsequent script-driven traumatic imagery. Can J Psychiatry. 2014;59(4):228–32. https://doi.org/10.1177/070674371405900408.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK. Reduction of PTSD symptoms with pre-reactivation propranolol therapy: a randomized controlled trial. Am J Psychiatry. 2018;175(5):427–33. https://doi.org/10.1176/appi.ajp.2017.17050481.

    Article  PubMed  Google Scholar 

  33. Raut SB, Canales JJ, Ravindran M, Eri R, Benedek DM, Ursano RJ, et al. Effects of propranolol on the modification of trauma memory reconsolidation in PTSD patients: a systematic review and meta-analysis. J Psychiatr Res. 2022;150:246–56. https://doi.org/10.1016/j.jpsychires.2022.03.045.

    Article  PubMed  Google Scholar 

  34. Hendrickson RC, Raskind MA. Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol. 2016;284(Pt B):181–95. https://doi.org/10.1016/j.expneurol.2016.05.014.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor FB, Martin P, Thompson C, Williams J, Mellman TA, Gross C, et al. Prazosin effects on objective sleep measures and clinical symptoms in civilian trauma posttraumatic stress disorder: a placebo-controlled study. Biol Psychiatry. 2008;63(6):629–32. https://doi.org/10.1016/j.biopsych.2007.07.001.

    Article  CAS  PubMed  Google Scholar 

  36. Raskind MA, Peskind ER, Hoff DJ, Hart KL, Holmes HA, Warren D, et al. A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol Psychiatry. 2007;61(8):928–34. https://doi.org/10.1016/j.biopsych.2006.06.032.

    Article  CAS  PubMed  Google Scholar 

  37. Smith C, Koola MM. Evidence for Using Doxazosin in the Treatment of Posttraumatic Stress Disorder. Psychiatr Ann. 2016;46(9):553–5. https://doi.org/10.3928/00485713-20160728-01.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Richards A, Inslicht S, Ruoff LM, Metzler TJ, Goldstein LA, Chapman CM, et al. An Open-label study of doxazosin extended-release for PTSD: findings and recommendations for future research on doxazosin. Focus (Am Psychiatr Publ). 2018;16(1):67–73. https://doi.org/10.1176/appi.focus.20170031.

    Article  PubMed  PubMed Central  Google Scholar 

  39. De Jong J, Wauben P, Huijbrechts I, Oolders H, Haffmans J. Doxazosin treatment for posttraumatic stress disorder. J Clin Psychopharmacol. 2010;30(1):84–5. https://doi.org/10.1097/JCP.0b013e3181c827ae.

    Article  PubMed  Google Scholar 

  40. Rodgman C, Verrico CD, Holst M, Thompson-Lake D, Haile CN, De La Garza 2nd R, et al. Doxazosin XL reduces symptoms of posttraumatic stress disorder in veterans with PTSD: a pilot clinical trial. J Clin Psychiatry. 2016;77(5):e561–5. https://doi.org/10.4088/JCP.14m09681.

    Article  PubMed  Google Scholar 

  41. Sullivan GM, Gendreau RM, Gendreau J, Peters P, Peters A, Engels J, et al. Randomized clinical trial of bedtime sublingual cyclobenzaprine (TNX-102 SL) in military-related PTSD and the role of sleep quality in treatment response. Psychiatry Res. 2021;301: 113974. https://doi.org/10.1016/j.psychres.2021.113974.

    Article  CAS  PubMed  Google Scholar 

  42. Vaiva G, Thomas P, Ducrocq F, Fontaine M, Boss V, Devos P, et al. Low posttrauma GABA plasma levels as a predictive factor in the development of acute posttraumatic stress disorder. Biol Psychiatry. 2004;55(3):250–4. https://doi.org/10.1016/j.biopsych.2003.08.009.

    Article  CAS  PubMed  Google Scholar 

  43. Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S, Charney DS. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am J Psychiatry. 2000;157(7):1120–6. https://doi.org/10.1176/appi.ajp.157.7.1120.

    Article  CAS  PubMed  Google Scholar 

  44. Geuze E, van Berckel BN, Lammertsma AA, Boellaard R, de Kloet CS, Vermetten E, et al. Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol Psychiatry. 2008;13(1):74–83. https://doi.org/10.1038/sj.mp.4002054. (3).

    Article  CAS  PubMed  Google Scholar 

  45. Pinna G, Rasmusson AM. Ganaxolone improves behavioral deficits in a mouse model of post-traumatic stress disorder. Front Cell Neurosci. 2014;8:256. https://doi.org/10.3389/fncel.2014.00256.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hecking J, Davoudian PA, Wilkinson ST. Emerging therapeutics based on the amino acid neurotransmitter system: an update on the pharmaceutical pipeline for mood disorders. Chronic Stress (Thousand Oaks). 2021;5:24705470211020450. https://doi.org/10.1177/24705470211020446.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cullinan WE, Ziegler DR, Herman JP. Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct. 2008;213(1–2):63–72. https://doi.org/10.1007/s00429-008-0192-2.

    Article  CAS  PubMed  Google Scholar 

  48. Almeida FB, Pinna G, Barros HMT. The role of HPA axis and allopregnanolone on the neurobiology of major depressive disorders and PTSD. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115495.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, et al. Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry. 2006;60(7):704–13. https://doi.org/10.1016/j.biopsych.2006.03.026.

    Article  CAS  PubMed  Google Scholar 

  50. Kilts JD, Tupler LA, Keefe FJ, Payne VM, Hamer RM, Naylor JC, et al. Neurosteroids and self-reported pain in veterans who served in the U.S. Military after September 11, 2001. Pain Med. 2010;11(10):1469–76. https://doi.org/10.1111/j.1526-4637.2010.00927.x.

    Article  PubMed  Google Scholar 

  51. Rasmusson AM, Marx CE, Jain S, Farfel GM, Tsai J, Sun X, et al. A randomized controlled trial of ganaxolone in posttraumatic stress disorder. Psychopharmacology. 2017;234(15):2245–57. https://doi.org/10.1007/s00213-017-4649-y.

    Article  CAS  PubMed  Google Scholar 

  52. Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, et al. Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front Psychiatry. 2020;11: 595584. https://doi.org/10.3389/fpsyt.2020.595584.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wise T, Patrick F, Meyer N, Mazibuko N, Oates AE, van der Bijl AHM, et al. Cholinergic Modulation of Disorder-Relevant Neural Circuits in Generalized Anxiety Disorder. Biol Psychiatry. 2020;87(10):908–15. https://doi.org/10.1016/j.biopsych.2019.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perkins A, Patrick F, Wise T, Meyer N, Mazibuko N, Oates AE, et al. Cholinergic modulation of disorder-relevant human defensive behaviour in generalised anxiety disorder. Transl Psychiatry. 2021;11(1):13. https://doi.org/10.1038/s41398-020-01141-5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Admon R, Lubin G, Stern O, Rosenberg K, Sela L, Ben-Ami H, et al. Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proc Natl Acad Sci U S A. 2009;106(33):14120–5. https://doi.org/10.1073/pnas.0903183106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002;5(11):1242–7. https://doi.org/10.1038/nn958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Glover GH, Sullivan EV, et al. Blind smell: brain activation induced by an undetected air-borne chemical. Brain. 1999;122(Pt 2):209–17. https://doi.org/10.1093/brain/122.2.209.

    Article  PubMed  Google Scholar 

  58. Monti-Bloch L, Jennings-White C, Berliner DL. The human vomeronasal system. A review. Ann N Y Acad Sci. 1998;855:373–89. https://doi.org/10.1111/j.1749-6632.1998.tb10595.x.

    Article  CAS  PubMed  Google Scholar 

  59. Monti-Bloch L, Jennings-White C, Dolberg DS, Berliner DL. The human vomeronasal system. Psychoneuroendocrinology. 1994;19(5–7):673–86. https://doi.org/10.1016/0306-4530(94)90049-3.

    Article  CAS  PubMed  Google Scholar 

  60. Liebowitz MR, Hanover R, Draine A, Lemming R, Careri J, Monti L. Effect of as-needed use of intranasal PH94B on social and performance anxiety in individuals with social anxiety disorder. Depress Anxiety. 2016;33(12):1081–9. https://doi.org/10.1002/da.22546.

    Article  PubMed  Google Scholar 

  61. Liebowitz MR, Salman E, Nicolini H, Rosenthal N, Hanover R, Monti L. Effect of an acute intranasal aerosol dose of PH94B on social and performance anxiety in women with social anxiety disorder. Am J Psychiatry. 2014;171(6):675–82. https://doi.org/10.1176/appi.ajp.2014.12101342.

    Article  PubMed  Google Scholar 

  62. Berger W, Mendlowicz MV, Marques-Portella C, Kinrys G, Fontenelle LF, Marmar CR, et al. Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):169–80. https://doi.org/10.1016/j.pnpbp.2008.12.004.

    Article  CAS  PubMed  Google Scholar 

  63. Villarreal G, Calais LA, Canive JM, Lundy SL, Pickard J, Toney G. Prospective study to evaluate the efficacy of aripiprazole as a monotherapy in patients with severe chronic posttraumatic stress disorder: an open trial. Psychopharmacol Bull. 2007;40(2):6–18.

    PubMed  Google Scholar 

  64. Mello MF, Costa MC, Schoedl AF, Fiks JP. Aripiprazole in the treatment of posttraumatic stress disorder: an open-label trial. Braz J Psychiatry. 2008;30(4):358–61. https://doi.org/10.1590/s1516-44462008000400011.

    Article  PubMed  Google Scholar 

  65. Robert S, Hamner MB, Durkalski VL, Brown MW, Ulmer HG. An open-label assessment of aripiprazole in the treatment of PTSD. Psychopharmacol Bull. 2009;42(1):69–80.

    PubMed  Google Scholar 

  66. Richardson JD, Fikretoglu D, Liu A, McIntosh D. Aripiprazole augmentation in the treatment of military-related PTSD with major depression: a retrospective chart review. BMC Psychiatry. 2011;11:86. https://doi.org/10.1186/1471-244X-11-86.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Naylor JC, Kilts JD, Bradford DW, Strauss JL, Capehart BP, Szabo ST, et al. A pilot randomized placebo-controlled trial of adjunctive aripiprazole for chronic PTSD in US military Veterans resistant to antidepressant treatment. Int Clin Psychopharmacol. 2015;30(3):167–74. https://doi.org/10.1097/YIC.0000000000000061.

    Article  PubMed  Google Scholar 

  68. Cohen H, Zohar J, Kaplan Z, Arnt J. Adjunctive treatment with brexpiprazole and escitalopram reduces behavioral stress responses and increase hypothalamic NPY immunoreactivity in a rat model of PTSD-like symptoms. Eur Neuropsychopharmacol. 2018;28(1):63–74. https://doi.org/10.1016/j.euroneuro.2017.11.017.

    Article  CAS  PubMed  Google Scholar 

  69. Ducourneau EG, Guette C, Perrot D, Mondesir M, Mombereau C, Arnt J, et al. Brexpiprazole blocks post-traumatic stress disorder-like memory while promoting normal fear memory. Mol Psychiatry. 2021;26(7):3018–33. https://doi.org/10.1038/s41380-020-0852-z.

    Article  CAS  PubMed  Google Scholar 

  70. Holmes SE, Girgenti MJ, Davis MT, Pietrzak RH, DellaGioia N, Nabulsi N, et al. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc Natl Acad Sci U S A. 2017;114(31):8390–5. https://doi.org/10.1073/pnas.1701749114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lijffijt M, Green CE, Balderston N, Iqbal T, Atkinson M, Vo-Le B, et al. A proof-of-mechanism study to test effects of the NMDA receptor antagonist lanicemine on behavioral sensitization in individuals with symptoms of PTSD. Front Psychiatry. 2019;10:846. https://doi.org/10.3389/fpsyt.2019.00846.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiat. 2014;71(6):681–8. https://doi.org/10.1001/jamapsychiatry.2014.62.

    Article  CAS  Google Scholar 

  73. Feder A, Costi S, Rutter SB, Collins AB, Govindarajulu U, Jha MK, et al. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. Am J Psychiatry. 2021;178(2):193–202. https://doi.org/10.1176/appi.ajp.2020.20050596.

    Article  PubMed  Google Scholar 

  74. Shiroma PR, Thuras P, Wels J, Erbes C, Kehle-Forbes S, Polusny M. A proof-of-concept study of subanesthetic intravenous ketamine combined with prolonged exposure therapy among veterans with posttraumatic stress disorder. J Clin Psychiatry. 2020. https://doi.org/10.4088/JCP.20l13406.

    Article  PubMed  Google Scholar 

  75. Pradhan B, Mitrev L, Moaddell R, Wainer IW. d-Serine is a potential biomarker for clinical response in treatment of post-traumatic stress disorder using (R, S)-ketamine infusion and TIMBER psychotherapy: A pilot study. Biochim Biophys Acta Proteins Proteom. 2018;1866(7):831–9. https://doi.org/10.1016/j.bbapap.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee B, Pothula S, Wu M, Kang H, Girgenti MJ, Picciotto MR, et al. Positive modulation of N-methyl-D-aspartate receptors in the mPFC reduces the spontaneous recovery of fear. Mol Psychiatry. 2022;27(5):2580–9. https://doi.org/10.1038/s41380-022-01498-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zoladz PR, Fleshner M, Diamond DM. Differential effectiveness of tianeptine, clonidine and amitriptyline in blocking traumatic memory expression, anxiety and hypertension in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:1–16. https://doi.org/10.1016/j.pnpbp.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  78. Franciskovic T, Sukovic Z, Janovic S, Stevanovic A, Nemcic-Moro I, Roncevic-Grzeta I, et al. Tianeptine in the combined treatment of combat related posttraumatic stress disorder. Psychiatr Danub. 2011;23(3):257–63.

    CAS  PubMed  Google Scholar 

  79. Onder E, Tural U, Aker T. A comparative study of fluoxetine, moclobemide, and tianeptine in the treatment of posttraumatic stress disorder following an earthquake. Eur Psychiatry. 2006;21(3):174–9. https://doi.org/10.1016/j.eurpsy.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  80. Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci. 2011;13(3):263–78. https://doi.org/10.31887/DCNS.2011.13.2/jsherin.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Daskalakis NP, Lehrner A, Yehuda R. Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinol Metab Clin N Am. 2013;42(3):503–13. https://doi.org/10.1016/j.ecl.2013.05.004.

    Article  Google Scholar 

  82. Jovanovic T, Duncan EJ, Kaye J, Garza K, Norrholm SD, Inslicht SS, et al. Psychophysiological treatment outcomes: Corticotropin-releasing factor type 1 receptor antagonist increases inhibition of fear-potentiated startle in PTSD patients. Psychophysiology. 2020;57(1): e13356. https://doi.org/10.1111/psyp.13356.

    Article  PubMed  Google Scholar 

  83. Dunlop BW, Binder EB, Iosifescu D, Mathew SJ, Neylan TC, Pape JC, et al. Corticotropin-Releasing Factor Receptor 1 Antagonism Is Ineffective for Women With Posttraumatic Stress Disorder. Biol Psychiatry. 2017;82(12):866–74. https://doi.org/10.1016/j.biopsych.2017.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sipos E, Torok B, Barna I, Engelmann M, Zelena D. Vasopressin and post-traumatic stress disorder. Stress. 2020;23(6):732–45. https://doi.org/10.1080/10253890.2020.1826430.

    Article  CAS  PubMed  Google Scholar 

  85. Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol. 2004;25(3–4):132–49. https://doi.org/10.1016/j.yfrne.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  86. Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides. 2010;31(4):736–56. https://doi.org/10.1016/j.peptides.2009.12.015.

    Article  CAS  PubMed  Google Scholar 

  87. Zelena D, Pinter O, Balazsfi DG, Langnaese K, Richter K, Landgraf R, et al. Vasopressin signaling at brain level controls stress hormone release: the vasopressin-deficient Brattleboro rat as a model. Amino Acids. 2015;47(11):2245–53. https://doi.org/10.1007/s00726-015-2026-x.

    Article  CAS  PubMed  Google Scholar 

  88. An XL, Tai FD. AVP and Glu systems interact to regulate levels of anxiety in BALB/cJ mice. Dongwuxue Yanjiu. 2014;35(4):319–25. https://doi.org/10.13918/j.issn.2095-8137.2014.4.319.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bleickardt CJ, Mullins DE, Macsweeney CP, Werner BJ, Pond AJ, Guzzi MF, et al. Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like behavior. Psychopharmacology. 2009;202(4):711–8. https://doi.org/10.1007/s00213-008-1354-x.

    Article  CAS  PubMed  Google Scholar 

  90. Fabio KM, Guillon CD, Lu SF, Heindel ND, Brownstein MJ, Lacey CJ, et al. Pharmacokinetics and metabolism of SRX246: a potent and selective vasopressin 1a antagonist. J Pharm Sci. 2013;102(6):2033–43. https://doi.org/10.1002/jps.23495.

    Article  CAS  PubMed  Google Scholar 

  91. Lee RJ, Coccaro EF, Cremers H, McCarron R, Lu SF, Brownstein MJ, et al. A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front Syst Neurosci. 2013;7:100. https://doi.org/10.3389/fnsys.2013.00100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lago TR, Brownstein MJ, Page E, Beydler E, Manbeck A, Beale A, et al. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study. Psychopharmacology. 2021;238(9):2393–403. https://doi.org/10.1007/s00213-021-05861-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Difede J, McAleavey AA, Emrich M, Jick A, Ovalles A, Wyka K, et al. A proof-of-concept randomized crossover clinical trial of a first-in-class vasopressin 1a receptor antagonist for PTSD: Design, methods, and recruitment. Contemp Clin Trials Commun. 2023;33: 101116. https://doi.org/10.1016/j.conctc.2023.101116.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rocchetti M, Radua J, Paloyelis Y, Xenaki LA, Frascarelli M, Caverzasi E, et al. Neurofunctional maps of the “maternal brain” and the effects of oxytocin: a multimodal voxel-based meta-analysis. Psychiatry Clin Neurosci. 2014;68(10):733–51. https://doi.org/10.1111/pcn.12185.

    Article  CAS  PubMed  Google Scholar 

  95. Bartz JA, Zaki J, Bolger N, Hollander E, Ludwig NN, Kolevzon A, et al. Oxytocin selectively improves empathic accuracy. Psychol Sci. 2010;21(10):1426–8. https://doi.org/10.1177/0956797610383439.

    Article  PubMed  Google Scholar 

  96. Hashimoto H, Uezono Y, Ueta Y. Pathophysiological function of oxytocin secreted by neuropeptides: A mini review. Pathophysiology. 2012;19(4):283–98. https://doi.org/10.1016/j.pathophys.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  97. Acheson D, Feifel D, de Wilde S, McKinney R, Lohr J, Risbrough V. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology. 2013;229(1):199–208. https://doi.org/10.1007/s00213-013-3099-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Quirin M, Kuhl J, Dusing R. Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinology. 2011;36(6):898–904. https://doi.org/10.1016/j.psyneuen.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  99. Flanagan JC, Allan NP, Calhoun CD, Badour CL, Moran-Santa Maria M, Brady KT, et al. Effects of oxytocin on stress reactivity and craving in veterans with co-occurring PTSD and alcohol use disorder. Exp Clin Psychopharmacol. 2019;27(1):45–54. https://doi.org/10.1037/pha0000232.

    Article  CAS  PubMed  Google Scholar 

  100. Sripada CS, Phan KL, Labuschagne I, Welsh R, Nathan PJ, Wood AG. Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int J Neuropsychopharmacol. 2013;16(2):255–60. https://doi.org/10.1017/S1461145712000533.

    Article  CAS  PubMed  Google Scholar 

  101. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry. 2007;62(10):1187–90. https://doi.org/10.1016/j.biopsych.2007.03.025.

    Article  CAS  PubMed  Google Scholar 

  102. Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord. 2012;2:9. https://doi.org/10.1186/2045-5380-2-9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Karl A, Schaefer M, Malta LS, Dorfel D, Rohleder N, Werner A. A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev. 2006;30(7):1004–31. https://doi.org/10.1016/j.neubiorev.2006.03.004.

    Article  PubMed  Google Scholar 

  104. Giovanna G, Damiani S, Fusar-Poli L, Rocchetti M, Brondino N, de Cagna F, et al. Intranasal oxytocin as a potential therapeutic strategy in post-traumatic stress disorder: a systematic review. Psychoneuroendocrinology. 2020;115: 104605. https://doi.org/10.1016/j.psyneuen.2020.104605.

    Article  CAS  PubMed  Google Scholar 

  105. Hillard CJ. Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol. 2014;26(5):380–8. https://doi.org/10.1016/j.smim.2014.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bassir Nia A, Bender R, Harpaz-Rotem I. Endocannabinoid system alterations in posttraumatic stress disorder: a review of developmental and accumulative effects of trauma. Chronic Stress (Thousand Oaks). 2019. https://doi.org/10.1177/2470547019864096.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19030833.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hill MN, McLaughlin RJ, Morrish AC, Viau V, Floresco SB, Hillard CJ, et al. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology. 2009;34(13):2733–45. https://doi.org/10.1038/npp.2009.114.

    Article  CAS  PubMed  Google Scholar 

  109. Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimaraes FS. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci. 2012;367(1607):3364–78. https://doi.org/10.1098/rstb.2011.0389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215. https://doi.org/10.1038/sj.bjp.0707442.

    Article  CAS  PubMed  Google Scholar 

  111. Elms L, Shannon S, Hughes S, Lewis N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J Altern Complement Med. 2019;25(4):392–7. https://doi.org/10.1089/acm.2018.0437.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Telch MJ, Fischer CM, Zaizar ED, Rubin M, Papini S. Use of Cannabidiol (CBD) oil in the treatment of PTSD: Study design and rationale for a placebo-controlled randomized clinical trial. Contemp Clin Trials. 2022;122: 106933. https://doi.org/10.1016/j.cct.2022.106933.

    Article  PubMed  Google Scholar 

  113. Kautz M, Charney DS, Murrough JW. Neuropeptide Y, resilience, and PTSD therapeutics. Neurosci Lett. 2017;649:164–9. https://doi.org/10.1016/j.neulet.2016.11.061.

    Article  CAS  PubMed  Google Scholar 

  114. Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol. 2016;284(Pt B):196–210. https://doi.org/10.1016/j.expneurol.2016.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kask A, Harro J, von Horsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev. 2002;26(3):259–83. https://doi.org/10.1016/s0149-7634(01)00066-5.

    Article  CAS  PubMed  Google Scholar 

  116. Bannon AW, Seda J, Carmouche M, Francis JM, Norman MH, Karbon B, et al. Behavioral characterization of neuropeptide Y knockout mice. Brain Res. 2000;868(1):79–87. https://doi.org/10.1016/s0006-8993(00)02285-x.

    Article  CAS  Google Scholar 

  117. Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF, et al. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology. 1993;8(4):357–63. https://doi.org/10.1038/npp.1993.35.

    Article  CAS  PubMed  Google Scholar 

  118. Hendry SH. Organization of neuropeptide Y neurons in the mammalian central nervous system. In: Colmers WF, Wahlestedt, C, editors. The biology of neuropeptide Y and related peptides. Springer; 1993. p. 65–156. https://doi.org/10.1007/978-1-59259-465-8_3.

  119. Giesbrecht CJ, Mackay JP, Silveira HB, Urban JH, Colmers WF. Countervailing modulation of Ih by neuropeptide Y and corticotrophin-releasing factor in basolateral amygdala as a possible mechanism for their effects on stress-related behaviors. J Neurosci. 2010;30(50):16970–82. https://doi.org/10.1523/JNEUROSCI.2306-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sayed S, Van Dam NT, Horn SR, Kautz MM, Parides M, Costi S, et al. A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. Int J Neuropsychopharmacol. 2018;21(1):3–11. https://doi.org/10.1093/ijnp/pyx109.

    Article  CAS  PubMed  Google Scholar 

  121. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177(5):391–410. https://doi.org/10.1176/appi.ajp.2019.19010035.

    Article  PubMed  Google Scholar 

  122. Mertens LJ, Wall MB, Roseman L, Demetriou L, Nutt DJ, Carhart-Harris RL. Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J Psychopharmacol. 2020;34(2):167–80. https://doi.org/10.1177/0269881119895520.

    Article  CAS  PubMed  Google Scholar 

  123. Du Y, Li Y, Zhao X, Yao Y, Wang B, Zhang L, et al. Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity. Chin Med J (Engl). 2023. https://doi.org/10.1097/CM9.0000000000002647.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bird CIV, Modlin NL, Rucker JJH. Psilocybin and MDMA for the treatment of trauma-related psychopathology. Int Rev Psychiatry. 2021;33(3):229–49. https://doi.org/10.1080/09540261.2021.1919062.

    Article  PubMed  Google Scholar 

  125. Feduccia AA, Jerome L, Yazar-Klosinski B, Emerson A, Mithoefer MC, Doblin R. Breakthrough for trauma treatment: safety and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Front Psychiatry. 2019;10:650. https://doi.org/10.3389/fpsyt.2019.00650.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R. The safety and efficacy of +/-3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol. 2011;25(4):439–52. https://doi.org/10.1177/0269881110378371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mithoefer MC, Feduccia AA, Jerome L, Mithoefer A, Wagner M, Walsh Z, et al. MDMA-assisted psychotherapy for treatment of PTSD: study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology. 2019;236(9):2735–45. https://doi.org/10.1007/s00213-019-05249-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat Med. 2021;27(6):1025–33. https://doi.org/10.1038/s41591-021-01336-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. Hamner.

Ethics declarations

Funding

No funding was received for preparation of this manuscript.

Conflicts of Interest

This material is the result of work supported with resources and the use of facilities at VA Medical Centers. The contents of this publication do not represent the views of the Department of Veterans Affairs or the United States Government. Mark B. Hamner is a recipient of research funds from Boehinger-Ingleheim. Zachary D. Zuschlag and Michael A. Norred report no competing interests or conflicts of interest.

Availability of Data and Material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics Approval Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

All authors (MN, ZZ, MH) contributed to the manuscript conception and completion. All authors have read and approved the final version of this manuscript and agree to be accountable for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norred, M.A., Zuschlag, Z.D. & Hamner, M.B. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 84, 149–164 (2024). https://doi.org/10.1007/s40265-023-01983-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01983-5

Navigation