Skip to main content
Log in

Update on the Application of Monoclonal Antibody Therapy in Primary Membranous Nephropathy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

When first introduced, rituximab (RTX), a chimeric anti-CD20 monoclonal antibody, brought about an alternative therapeutic paradigm for primary membranous nephropathy (PMN). Rituximab was shown to be effective and safe in PMN patients with kidney dysfunction, with. patients receiving second-line rituximab therapy achieving remission as effectively as those patients who had not previously received immunotherapy. No safety issues were reported. The B cell-driven protocol seems to be as efficient as the 375 mg/m2 × 4 regimen or 1 g × 2 regimen in achieving B cell depletion and remission, but patients with high M-type phospholipase A2 receptor (PLA2R) antibody levels may benefit from a higher dose of rituximab. While rituximab added another therapeutic option to the treatment regimen, it does have limitations as 20 to 40% of patients do not respond. Not all patients respond to RTX therapy for lymphoproliferative disorders either, therefore further novel anti-CD20 monoclonal antibodies have been developed and these may provide alternative therapeutic options for PMN. Ofatumumab, a fully human monoclonal antibody, specifically recognizes an epitope encompassing both the small and large extracellular loops of the CD20 molecule, resulting in increased complement-dependent cytotoxic activity. Ocrelizumab binds an alternative but overlapping epitope region to rituximab and displays enhanced antibody-dependent cellular cytotoxic (ADCC) activities. Obinutuzumab is designed to have a modified elbow-hinge amino acid sequence, leading to increased direct cell death induction and ADCC activities. In PMN clinical studies, ocrelizumab and obinutuzumab showed promising results, while ofatumumab displayed mixed results. However, there is a lack of randomized controlled trials with large samples, especially direct head-to-head comparisons. Alternative molecular mechanisms have been suggested in this context to explore novel therapeutic strategies. B cell activator-targeted, plasma cell-targeted and complement-directed treatments may lead to novel therapy paradigms for PMN. Exploratory strategies for the use of drugs with different mechanisms, such as a combination of rituximab and cyclophosphamide and a steroid, a combination of rituximab and a calcineurin inhibitor, may provide more rapid and efficient remission, but the combination of standard immunosuppression with rituximab could increase infection risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jha V, et al. A randomized controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol. 2007;18(6):1899–904.

    Article  CAS  PubMed  Google Scholar 

  2. Jefferson JA. Complications of immunosuppression in glomerular disease. Clin J Am Soc Nephrol. 2018;13(8):1264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beck LJ, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomas NM, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cohen CD, et al. CD20-positive infiltrates in human membranous glomerulonephritis. J Nephrol. 2005;18(3):328–33.

    PubMed  Google Scholar 

  6. Salama AD, Pusey CD. Drug insight: rituximab in renal disease and transplantation. Nat Clin Pract Nephrol. 2006;2(4):221–30.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman W, Lakkis FG, Chalasani G. B cells antibodies and more. Clin J Am Soc Nephrol. 2016;11(1):137–54.

    Article  CAS  PubMed  Google Scholar 

  8. Dörner T, Burmester GR. New approaches of B-cell-directed therapy: beyond rituximab. Curr Opin Rheumatol. 2008;20(3):263–8.

    Article  PubMed  Google Scholar 

  9. Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013;15(Suppl 1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vale AM, Schroeder HJ. Clinical consequences of defects in B-cell development. J Allergy Clin Immunol. 2010;125(4):778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glennie MJ, et al. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44(16):3823–37.

    Article  CAS  PubMed  Google Scholar 

  12. Alduaij W, et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent lysosome-mediated cell death in B-cell malignancies. Blood. 2011;117(17):4519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist. 2008;13(9):954–66.

    Article  CAS  PubMed  Google Scholar 

  14. Cragg MS, et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101(3):1045–52.

    Article  CAS  PubMed  Google Scholar 

  15. Mössner E, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar A, et al. Binding mechanisms of therapeutic antibodies to human CD20. Science. 2020;369(6505):793–9.

    Article  CAS  PubMed  Google Scholar 

  17. Beers SA, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out-performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008;112(10):4170–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ivanov A, et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest. 2009;119(8):2143–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Herter S, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy V, et al. Internalization of rituximab and the efficiency of B cell depletion in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(8):2046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein C, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beers SA, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115(25):5191–201.

    Article  CAS  PubMed  Google Scholar 

  23. Teeling JL, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.

    Article  CAS  PubMed  Google Scholar 

  24. Pawluczkowycz AW, et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–58.

    Article  CAS  PubMed  Google Scholar 

  25. Paci A, et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1 monoclonal antibodies antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer. 2020;128:107–18.

    Article  CAS  PubMed  Google Scholar 

  26. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22(47):7359–68.

    Article  CAS  PubMed  Google Scholar 

  27. Janas E, et al. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005;139(3):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clynes RA, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi Y, Ikezumi Y, Saitoh A. Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes. Nephrology. 2017;22(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  30. Remuzzi G, et al. Rituximab for idiopathic membranous nephropathy. Lancet. 2002;360(9337):923–4.

    Article  CAS  PubMed  Google Scholar 

  31. Dahan K, et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J Am Soc Nephrol. 2017;28(1):348–58.

    Article  CAS  PubMed  Google Scholar 

  32. Fervenza FC, et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med. 2019;381(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  33. Fernández-Juárez G, et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 2021;99(4):986–98.

    Article  PubMed  Google Scholar 

  34. Scolari F, et al. Rituximab or cyclophosphamide in the treatment of membranous nephropathy: the RI-CYCLO randomized trial. J Am Soc Nephrol. 2021;32(4):972–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fervenza R-R, Ortiz A. Recent clinical trials insights into the treatment of primary membranous nephropathy. Drugs. 2022;82(2):109–32.

    Article  PubMed  Google Scholar 

  36. Akyildiz A, et al. Effect of rituximab in patients with relapsed or refractory primary membranous nephropathy. Nephrol Dial Transplant. 2020;35:657–657.

    Article  Google Scholar 

  37. Busch M, et al. Rituximab for the second- and third-line therapy of idiopathic membranous nephropathy: a prospective single center study using a new treatment strategy. Clin Nephrol. 2013;80(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  38. Cravedi P, et al. Efficacy and safety of rituximab second-line therapy for membranous nephropathy: a prospective matched-cohort study. Am J Nephrol. 2011;33(5):461–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ruggenenti P, et al. Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol. 2012;23(8):1416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang L, et al. Rituximab for the management of idiopathic membranous nephropathy: a meta-analysis. Int Urol Nephrol. 2021;53(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gao S, et al. Rituximab therapy for primary membranous nephropathy in a Chinese cohort. Front Med (Lausanne). 2021;8: 663680.

    Article  PubMed  Google Scholar 

  42. Ou JY, et al. Evaluation of efficacy of rituximab for membranous nephropathy: a systematic review and meta-analysis of 11 studies. Nephrol Ther. 2022;18(2):104–12.

    Article  PubMed  Google Scholar 

  43. Ruggenenti P, et al. Rituximab for idiopathic membranous nephropathy: who can benefit? Clin J Am Soc Nephrol. 2006;1(4):738–48.

    Article  CAS  PubMed  Google Scholar 

  44. Michel PA, et al. Rituximab treatment for membranous nephropathy: a French clinical and serological retrospective study of 28 patients. Nephron Extra. 2011;1(1):251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guo Y, et al. Rituximab in patients with membranous nephropathy and kidney insufficiency. Front Pharmacol. 2022;13:1002117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X, et al. Rituximab for non-responsive idiopathic membranous nephropathy in a Chinese cohort. Nephrol Dial Transplant. 2018;33(9):1558–63.

    CAS  PubMed  Google Scholar 

  47. Ramachandran R, et al. Immunosuppressive therapy in primary membranous nephropathy with compromised renal function. Nephron. 2022;146(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  48. Hanset N, et al. Rituximab in patients with phospholipase a2 receptor-associated membranous nephropathy and severe CKD. Kidney Int Rep. 2020;5(3):331–8.

    Article  PubMed  Google Scholar 

  49. Lu W, et al. Efficacy and safety of rituximab in the treatment of membranous nephropathy: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(16): e19804.

    Article  CAS  PubMed  Google Scholar 

  50. Fervenza FC, et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 2008;73(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  51. Md YM, et al. Predicting severe infection and effects of hypogammaglobulinemia during therapy with rituximab in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2019;71(11):1812–23.

    Article  Google Scholar 

  52. Reddy V, et al. Pragmatic treatment of patients with systemic lupus erythematosus with rituximab: long-term effects on serum immunoglobulins. Arthritis Care Res (Hoboken). 2017;69(6):857–66.

    Article  CAS  PubMed  Google Scholar 

  53. Gauckler P, et al. Rituximab in membranous nephropathy. Kidney Int Rep. 2021;6(4):881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Trivin C, et al. Infectious complications of a rituximab-based immunosuppressive regimen in patients with glomerular disease. Clin Kidney J. 2017;10(4):461–9.

    PubMed  Google Scholar 

  55. Kridin K, Ahmed AR. Post-rituximab immunoglobulin M (IgM) hypogammaglobulinemia. Autoimmun Rev. 2020;19(3): 102466.

    Article  CAS  PubMed  Google Scholar 

  56. Alsharhan L, Beck LJ. Membranous nephropathy: core curriculum 2021. Am J Kidney Dis. 2021;77(3):440–53.

    Article  CAS  PubMed  Google Scholar 

  57. Rommer PS, et al. Safety and clinical outcomes of rituximab treatment in patients with multiple sclerosis and neuromyelitis optica: experience from a national online registry (GRAID). J Neuroimmune Pharmacol. 2016;11(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Fervenza FC, et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol. 2010;5(12):2188–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van den Brand J, et al. Safety of rituximab compared with steroids and cyclophosphamide for idiopathic membranous nephropathy. J Am Soc Nephrol. 2017;28(9):2729–37.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Armitage JD, et al. Acute coronary syndromes complicating the first infusion of rituximab. Clin Lymphoma Myeloma. 2008;8(4):253–5.

    Article  PubMed  Google Scholar 

  61. van Sijl AMW, van der Weele MT. Nurmohamed Myocardial infarction after rituximab treatment for rheumatoid arthritis: Is there a link? Curr Pharm Des. 2014;20(4):496–9.

    Article  PubMed  Google Scholar 

  62. Cheungpasitporn W, et al. Non-ischemic cardiomyopathy after rituximab treatment for membranous nephropathy. J Renal Inj Prev. 2017;6(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  63. Foran JM, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma immunocytoma and small B-cell lymphocytic lymphoma. J Clin Oncol. 2000;18(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  64. Poterucha JT, et al. Rituximab-induced polymorphic ventricular tachycardia. Tex Heart Inst J. 2010;37(2):218–20.

    PubMed  PubMed Central  Google Scholar 

  65. Arunprasath P, et al. Rituximab induced myocardial infarction: A fatal drug reaction. J Cancer Res Ther. 2011;7(3):346–8.

    Article  PubMed  Google Scholar 

  66. Arai Y, Tadokoro J, Mitani K. Ventricular tachycardia associated with infusion of rituximab in mantle cell lymphoma. Am J Hematol. 2005;78(4):317–8.

    Article  PubMed  Google Scholar 

  67. Coiffier B, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  68. Passalia C, et al. Cardiovascular adverse events complicating the administration of rituximab: report of two cases. Tumori. 2013;99(6):288e-e292.

    Article  PubMed  Google Scholar 

  69. Carson KR, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood. 2009;113(20):4834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cravedi P, Remuzzi G, Ruggenenti P. Rituximab in primary membranous nephropathy: first-line therapy why not? Nephron Clin Pract. 2014;128(3–4):261–9.

    Article  CAS  PubMed  Google Scholar 

  71. Kelly D, et al. Progressive multifocal leukoencephalopathy secondary to rituximab-induced immunosuppression and the presence of John Cunningham virus: a case report and literature review. Radiol Case Rep. 2016;11(3):251–4.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cravedi P, et al. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin J Am Soc Nephrol. 2007;2(5):932–7.

    Article  CAS  PubMed  Google Scholar 

  73. Ramachandran R, et al. Rituximab in primary membranous nephropathy: a comparative study of three dosing regimens. Nephrol Dial Transplant. 2021;2:2.

    Google Scholar 

  74. Esposito P, et al. Rituximab in primary membranous nephropathy: beyond a B-cell-centered paradigm? Clin Exp Nephrol. 2018;22(1):208–9.

    Article  PubMed  Google Scholar 

  75. Moroni G, et al. Low-dose rituximab is poorly effective in patients with primary membranous nephropathy. Nephrol Dial Transplant. 2017;32(10):1691–6.

    CAS  PubMed  Google Scholar 

  76. Seitz-Polski B, et al. High-Dose rituximab and early remission in PLA2R1-related membranous nephropathy. Clin J Am Soc Nephrol. 2019;14(8):1173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van de Logt AE, et al. Immunological remission in PLA2R-antibody-associated membranous nephropathy: cyclophosphamide versus rituximab. Kidney Int. 2018;93(4):1016–7.

    Article  PubMed  Google Scholar 

  78. Ruggenenti P, et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J Am Soc Nephrol. 2015;26(10):2545–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Delafosse M, et al. Personalized phospholipase A2 receptor antibody-driven rituximab treatment strategy in membranous nephropathy. Kidney Int. 2021;99(4):1023–4.

    Article  CAS  PubMed  Google Scholar 

  80. Dahan K, et al. Retreatment with rituximab for membranous nephropathy with persistently elevated titers of anti-phospholipase A2 receptor antibody. Kidney Int. 2019;95(1):233–4.

    Article  CAS  PubMed  Google Scholar 

  81. So B, Yap D, Chan TM. B cells in primary membranous nephropathy: escape from immune tolerance and implications for patient management. Int J Mol Sci. 2021;22:24.

    Article  Google Scholar 

  82. Del VL, et al. Rituximab therapy for adults with nephrotic syndromes: standard schedules or B cell-targeted therapy? J Clin Med. 2021;10:24.

    Google Scholar 

  83. Fogueri U, et al. Rituximab exhibits altered pharmacokinetics in patients with membranous nephropathy. Ann Pharmacother. 2019;53(4):357–63.

    Article  CAS  PubMed  Google Scholar 

  84. Boyer-Suavet S, et al. Rituximab bioavailability in primary membranous nephropathy. Nephrol Dial Transplant. 2019;34(8):1423–5.

    Article  CAS  PubMed  Google Scholar 

  85. Aleš RA, et al. Rituximab for the treatment of membranous nephropathy: a single-center experience. Clin Nephrol. 2017;88(13):27–31.

    Google Scholar 

  86. Teisseyre M, et al. Rituximab immunomonitoring predicts remission in membranous nephropathy. Front Immunol. 2021;12: 738788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boyer-Suavet S, et al. Neutralizing anti-rituximab antibodies and relapse in membranous nephropathy treated with rituximab. Front Immunol. 2019;10:3069.

    Article  CAS  PubMed  Google Scholar 

  88. Crickx E, et al. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Sci Transl Med. 2021;13:589.

    Article  Google Scholar 

  89. Ferreira F, Nunes AT. New treatments in membranous glomerulopathy—from the pitfalls of rituximab to a new era of biological treatments. Port J Nephrol Hypertens. 2020;34(3):160–4.

    Google Scholar 

  90. Sabiu G, Podestà MA. Membranous nephropathy: it is time to go back to the future. Nephron. 2021;145(6):721–7.

    Article  CAS  PubMed  Google Scholar 

  91. Kamburova EG, et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am J Transplant. 2013;13(6):1503–11.

    Article  CAS  PubMed  Google Scholar 

  92. Fervenza RPFC, Remuzzi G. Treatment of membranous nephropathy: time for a paradigm shift. Nat Rev Nephrol. 2017;13(9):563–79.

    Article  PubMed  Google Scholar 

  93. Salant DJ. Does epitope spreading influence responsiveness to rituximab in PLA2R-associated membranous nephropathy? Clin J Am Soc Nephrol. 2019;14(8):1122–4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cartron G, et al. Interindividual variability of response to rituximab: from biological origins to individualized therapies. Clin Cancer Res. 2011;17(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  95. Lim SH, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011;118(9):2530–40.

    Article  PubMed  Google Scholar 

  96. Passot C, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs. 2013;5(4):614–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Reagan JL, Castillo JJ. Ofatumumab as front-line therapy in untreated chronic lymphocytic leukemia. Future Oncol. 2014;10(7):1147–55.

    Article  CAS  PubMed  Google Scholar 

  98. Teeling JL, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800.

    Article  CAS  PubMed  Google Scholar 

  99. Bondza S, et al. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs. 2020;12(1):1792673.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bondza S, et al. Complement-dependent activity of CD20-specific IgG correlates with bivalent antigen binding and C1q binding strength. Front Immunol. 2020;11: 609941.

    Article  CAS  PubMed  Google Scholar 

  101. Li B, et al. Development of novel tetravalent anti-CD20 antibodies with potent antitumor activity. Cancer Res. 2008;68(7):2400–8.

    Article  CAS  PubMed  Google Scholar 

  102. Craigen JL, et al. Ofatumumab a human mab targeting a membrane-proximal small-loop epitope on CD20 induces potent NK cell-mediated ADCC. Blood. 2009;114(22):687–687.

    Article  Google Scholar 

  103. Kaegi C, et al. Systematic review of safety and efficacy of second- and third-generation CD20-targeting biologics in treating immune-mediated disorders. Front Immunol. 2021;12: 788830.

    Article  CAS  PubMed  Google Scholar 

  104. Podestà MA, et al. Ofatumumab for multirelapsing membranous nephropathy complicated by rituximab-induced serum-sickness. BMJ Case Rep. 2020;13:1.

    Article  Google Scholar 

  105. Teisseyre M, et al. Analysis and management of rituximab resistance in PLA2R1-associated membranous nephropathy. Kidney Int Rep. 2021;6(4):1183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Podestà MA, et al. Accelerating the depletion of circulating anti-phospholipase A2 receptor antibodies in patients with severe membranous nephropathy: preliminary findings with double filtration plasmapheresis and ofatumumab. Nephron. 2020;144(1):30–5.

    Article  PubMed  Google Scholar 

  107. Robak T, Robak E. New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs. 2011;25(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  108. Morschhauser F, et al. Results of a phase I/II study of ocrelizumab a fully humanized anti-CD20 mAb in patients with relapsed/refractory follicular lymphoma. Ann Oncol. 2010;21(9):1870–6.

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt T, et al. Successful treatment of PLA(2)R1-antibody positive membranous nephropathy with ocrelizumab. J Nephrol. 2021;34(2):603–6.

    Article  CAS  PubMed  Google Scholar 

  110. Casan J, et al. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother. 2018;14(12):2820–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu SD, et al. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res. 2015;3(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  112. Redfield RR, et al. Safety pharmacokinetics and pharmacodynamic activity of obinutuzumab a type 2 anti-CD20 monoclonal antibody for the desensitization of candidates for renal transplant. Am J Transplant. 2019;19(11):3035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hudson R, et al. Treatment resistant M-type phospholipase A2 receptor associated membranous nephropathy responds to obinutuzumab: a report of two cases. BMC Nephrol. 2022;23(1):134.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fervenza KNFC, Zand L. Successful treatment of patients with refractory PLA(2)R-associated membranous nephropathy with obinutuzumab: a report of 3 cases. Am J Kidney Dis. 2020;76(6):883–8.

    Article  PubMed  Google Scholar 

  115. Geara CCA, Sheridan B. Obinutuzumab use in early relapse of membranous nephropathy. Am J Kidney Di. 2022;79(4):S99–S99.

    Article  Google Scholar 

  116. Ginthör NE, et al. Membranous nephropathy associated with immunoglobulin G4-related disease successfully treated with obinutuzumab. Clin Kidney J. 2022;15(3):564–6.

    Article  PubMed  Google Scholar 

  117. Sethi S, et al. Obinutuzumab is effective for the treatment of refractory membranous nephropathy. Kidney Int Rep. 2020;5(9):1515–8.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ahmadian E, et al. Novel treatment options in rituximab-resistant membranous nephropathy patients. Int Immunopharmacol. 2022;107: 108635.

    Article  CAS  PubMed  Google Scholar 

  119. Liu Y, et al. Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell. 2002;108(3):383–94.

    Article  CAS  PubMed  Google Scholar 

  120. Vincent FB, et al. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 2013;24(3):203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Day ES, et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry. 2005;44(6):1919–31.

    Article  CAS  PubMed  Google Scholar 

  122. Sasaki Y, et al. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173(4):2245–52.

    Article  CAS  PubMed  Google Scholar 

  123. von Bülow GU, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity. 2001;14(5):573–82.

    Article  Google Scholar 

  124. Mantchev GT, et al. TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens. J Immunol. 2007;179(4):2282–8.

    Article  CAS  PubMed  Google Scholar 

  125. Sakurai D, et al. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood. 2007;109(7):2961–7.

    Article  CAS  PubMed  Google Scholar 

  126. Mackay F, Schneider P. TACI an enigmatic BAFF/APRIL receptor with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 2008;19(3–4):263–76.

    Article  CAS  PubMed  Google Scholar 

  127. O’Connor BP, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199(1):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Netti GS, et al. Serum levels of BAFF and APRIL predict clinical response in anti-PLA2R-positive primary membranous nephropathy. J Immunol Res. 2019;2019:8483650.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chiche L, et al. New treatment options for lupus - a focus on belimumab. Ther Clin Risk Manag. 2012;8:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Furie R, et al. Biologic activity and safety of belimumab a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008;10(5):R109.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Moore PA, et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285(5425):260–3.

    Article  CAS  PubMed  Google Scholar 

  132. Samy E, et al. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol. 2017;36(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  133. Barrett C, et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol Dial Transplant. 2020;35(4):599–606.

    Article  CAS  PubMed  Google Scholar 

  134. Hiepe F, et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol. 2011;7(3):170–8.

    Article  CAS  PubMed  Google Scholar 

  135. Crickx E, et al. Anti-CD20-mediated B-cell depletion in autoimmune diseases: successes failures and future perspectives. Kidney Int. 2020;97(5):885–93.

    Article  CAS  PubMed  Google Scholar 

  136. Toungouz LAM, Abramowicz D. Bortezomib: a new player in pre- and post-transplant desensitization? Nephrol Dial Transplant. 2010;25(11):3480–9.

    Article  PubMed  Google Scholar 

  137. van de Donk NW, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270(1):95–112.

    Article  PubMed  PubMed Central  Google Scholar 

  138. de Weers M, et al. Daratumumab a novel therapeutic human CD38 monoclonal antibody induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.

    Article  PubMed  Google Scholar 

  139. Deaglio S, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31 an Ig superfamily member. J Immunol. 1998;160(1):395–402.

    Article  CAS  PubMed  Google Scholar 

  140. Mei HE, et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood. 2015;125(11):1739–48.

    Article  CAS  PubMed  Google Scholar 

  141. Nooka AK, et al. Daratumumab in multiple myeloma. Cancer. 2019;125(14):2364–82.

    Article  PubMed  Google Scholar 

  142. Musto P, La Rocca F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials real-life studies and meta-analyses. Expert Rev Hematol. 2020;13(4):331–49.

    Article  CAS  PubMed  Google Scholar 

  143. van de Donk NPG, Richardson and F. Malavasi,. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131(1):13–29.

    Article  PubMed  Google Scholar 

  144. Vink CH, et al. Daratumumab for multidrug-resistant phospholipase-A2 receptor-related membranous nephropathy. Kidney Int. 2022;101(3):646–7.

    Article  PubMed  Google Scholar 

  145. Khandelwal BSWP, Grimley MS. A case of treatment-resistant membranous nephropathy associated with graft versus host disease successfully treated with daratumumab. Pediatr Transplant. 2022;26(4): e14263.

    PubMed  Google Scholar 

  146. Stehlé T, et al. Anti-CD38 therapy for PLA2R-positive membranous nephropathy resistant to conventional immunosuppression. Kidney Int. 2022;101(2):416–8.

    Article  PubMed  Google Scholar 

  147. Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol. 2016;12(4):232–40.

    Article  CAS  PubMed  Google Scholar 

  148. Laubach JP, et al. Novel therapies in the treatment of multiple myeloma. J Natl Compr Canc Netw. 2009;7(9):947–60.

    Article  CAS  PubMed  Google Scholar 

  149. Meister S, et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 2007;67(4):1783–92.

    Article  CAS  PubMed  Google Scholar 

  150. Perry DK, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant. 2009;9(1):201–9.

    Article  CAS  PubMed  Google Scholar 

  151. Salhi S, et al. Bortezomib plus dexamethasone for rituximab-resistant PLA2R(+) membranous nephropathy. Kidney Int. 2021;100(3):708–9.

    Article  CAS  PubMed  Google Scholar 

  152. Hartono C, et al. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J Nephrol. 2014;27(1):103–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Barbari A, et al. Bortezomib as a novel approach to early recurrent membranous glomerulonephritis after kidney transplant refractory to combined conventional rituximab therapy. Exp Clin Transplant. 2017;15(3):350–4.

    PubMed  Google Scholar 

  154. Jonathan ASGV, Hogana J (2021) Bortezomib treatment for refractory PLA2R-positive membranous nephropathy 2:2

  155. Cheungpasitporn W, et al. Bortezomib-induced acute interstitial nephritis. Nephrol Dial Transplant. 2015;30(7):1225–9.

    Article  CAS  PubMed  Google Scholar 

  156. Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient’s care. Lancet. 2015;385(9981):1983–92.

    Article  PubMed  Google Scholar 

  157. Cunningham PN, Quigg RJ. Contrasting roles of complement activation and its regulation in membranous nephropathy. J Am Soc Nephrol. 2005;16(5):1214–22.

    Article  CAS  PubMed  Google Scholar 

  158. Ayoub I, et al. Establishing a case for anti-complement therapy in membranous nephropathy. Kidney Int Rep. 2021;6(2):484–92.

    Article  PubMed  Google Scholar 

  159. Hsu SI, Couser WG. Chronic progression of tubulointerstitial damage in proteinuric renal disease is mediated by complement activation: a therapeutic role for complement inhibitors? J Am Soc Nephrol. 2003;14(7):S186-91.

    Article  CAS  PubMed  Google Scholar 

  160. Lai TSKN, Sacks SH. Role of complement in tubulointerstitial injury from proteinuria. Kidney Blood Press Res. 2002;25(2):120–6.

    Article  PubMed  Google Scholar 

  161. Werion A, Rondeau E. Application of C5 inhibitors in glomerular diseases in 2021. Kidney Res Clin Pract. 2022;41(4):412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schubart A, et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A. 2019;116(16):7926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xiao H, et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol. 2014;25(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  164. Bekker P, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168 a potent and selective orally administered complement 5a receptor inhibitor based on preclinical evaluation and randomized phase 1 clinical study. PLoS ONE. 2016;11(10): e0164646.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Maloney DG, et al. A phase 3 randomized study (HOMER) of ofatumumab vs rituximab in iNHL relapsed after rituximab-containing therapy. Blood Adv. 2020;4(16):3886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Le Gouill S, et al. Obinutuzumab vs rituximab for advanced DLBCL: a PET-guided and randomized phase 3 study by LYSA. Blood. 2021;137(17):2307–20.

    Article  PubMed  Google Scholar 

  167. Liu Z, Davidson A. BAFF and selection of autoreactive B cells. Trends Immunol. 2011;32(8):388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mahévas M, et al. Efficacy safety and immunological profile of combining rituximab with belimumab for adults with persistent or chronic immune thrombocytopenia: results from a prospective phase 2b trial. Haematologica. 2021;106(9):2449–57.

    Article  PubMed  Google Scholar 

  169. Rood IM, et al. B cell suppression in primary glomerular disease. Adv Chronic Kidney Dis. 2014;21(2):166–81.

    Article  PubMed  Google Scholar 

  170. Gong Q, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174(2):817–26.

    Article  CAS  PubMed  Google Scholar 

  171. Idrees N, Beck LJ. Multitarget combination immunosuppressive therapy for primary membranous nephropathy. Am J Kidney Dis. 2021;78(6):774–6.

    Article  CAS  PubMed  Google Scholar 

  172. Tao JYX, Chen H. The effect of rituximab assisted prednisone and cyclophosphamide on the treatment of idiopathic membranous nephropathy and its influence on serum nephrin and BAFF levels. Pak J Zool. 2022;54(2):771–6.

    Google Scholar 

  173. Cortazar FB, et al. Combination therapy with rituximab low-dose cyclophosphamide and prednisone for idiopathic membranous nephropathy: a case series. BMC Nephrol. 2017;18(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zonozi R, et al. Combination of rituximab low-dose cyclophosphamide and prednisone for primary membranous nephropathy: a case series with extended follow up. Am J Kidney Dis. 2021;78(6):793–803.

    Article  CAS  PubMed  Google Scholar 

  175. Dobronravov VA, et al. A novel approach to rapid induction of remission in primary membranous nephropathy. Ter Arkh. 2021;93(6):706–12.

    CAS  PubMed  Google Scholar 

  176. Segarra A, et al. Successful treatment of membranous glomerulonephritis with rituximab in calcineurin inhibitor-dependent patients. Clin J Am Soc Nephrol. 2009;4(6):1083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Teisseyre M, et al. Advances in the management of primary membranous nephropathy and rituximab-refractory membranous nephropathy. Front Immunol. 2022;13: 859419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nikolopoulou A, Griffith M. MENTOR heralds a new era of therapy for membranous nephropathy. Nat Rev Nephrol. 2019;15(11):664–6.

    Article  PubMed  Google Scholar 

  179. Naso E, Calo LA. Primary membranous nephropathy and its treatment: past present and future. Acta Med Mediterranea. 2021;37(1):21–6.

    Google Scholar 

  180. Waldman M, et al. Membranous nephropathy: pilot study of a novel regimen combining cyclosporine and Rituximab. Kidney Int Rep. 2016;1(2):73–84.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Waldman MH, Austin R, Balow JE. Rituximab or cyclosporine for membranous nephropathy. N Engl J Med. 2019;381(17):1688.

    Article  PubMed  Google Scholar 

  182. Zhu F, et al. Combination of ultra-low dose rituximab and low dose tacrolimus versus tacrolimus alone in the treatment of non-responsive idiopathic membranous nephropathy: a Chinese retrospective cohort study. Am J Transl Res. 2021;13(7):7622–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Gürcan HM, et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 2009;9(1):10–25.

    Article  PubMed  Google Scholar 

  184. Ronco PEP, Debiec H. Advances in membranous nephropathy. J Clin Med. 2021;10:4.

    Article  Google Scholar 

  185. Salant DJ. Unmet challenges in membranous nephropathy. Curr Opin Nephrol Hypertens. 2019;28(1):70–6.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lateb M, et al. Anti-PLA2R1 antibodies containing sera induce in vitro cytotoxicity mediated by complement activation. J Immunol Res. 2019;2019:1324804.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaosi Xu.

Ethics declarations

Author Contributions

LD and GX conceived and designed the study, authored or reviewed drafts of the paper, and approved the final draft.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81970583 and 82060138), the Nature Science Foundation of Jiangxi Province (No. 2020BABL206025), and the Key Project of Natural Science Foundation of Jiangxi Province (No. 20224ACB206008), and the Renal Disease Engineering Technology Research Center of Jiangxi Province (No. 20164BCD40095).

Conflict of Interests

“Le Deng and Gaosi Xu declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.”

Ethics

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current article.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Xu, G. Update on the Application of Monoclonal Antibody Therapy in Primary Membranous Nephropathy. Drugs 83, 507–530 (2023). https://doi.org/10.1007/s40265-023-01855-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01855-y

Navigation