Skip to main content
Log in

In Utero Exposure to Antibiotics and Risk of Serious Infections in the First Year of Life

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction and Objective

Given the high prevalence of antibiotic prescription during pregnancy in France and previous studies suggesting an increased risk of infection in offspring with such exposures, our study aimed to investigate the association between prenatal exposure to systemic antibiotics and serious infections in full-term infants during their first year of life.

Methods

We conducted a retrospective population-based cohort study on singleton, full-term liveborn non-immunocompromised infants, using the French National Health Data System (SNDS) between 2012 and 2021. Systemic antibiotic dispensing in ambulatory care settings during pregnancy defined the exposure. Outcomes concerned serious infections (i.e., infections requiring hospitalization) in offspring identified between 3 and 12 months of life, hence excluding infections of maternal origin. Adjusted odds ratios (aORs) were estimated using logistic regression with multivariate models to control for potential confounders.

Results

Of 2,836,630 infants included, 39.6% were prenatally exposed to systemic antibiotics. Infants prenatally exposed to antibiotics had a higher incidence of serious infections compared with unexposed infants {aOR 1.12 [95% confidence interval (95% CI) 1.11–1.13]}. Similar associations were observed according to the timing of exposure during pregnancy, antibiotic class, and site of infections. The strongest association was observed when infants were prenatally exposed to three or more antibiotic courses during pregnancy [aOR 1.21 (95% CI 1.19–1.24)]. Limitations include residual confounders, such as genetic susceptibility to infections and the role of the underlying pathogen agent.

Conclusion

Prenatal exposure to systemic antibiotics is very common and is associated with a weak yet significant associations with subsequent serious infectious events during the first year of life. While our study revealed associations, it is important to note that causation cannot be established, given the acknowledged limitations, including potential confounding by indication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sinha A, Yokoe D, Platt R. Epidemiology of neonatal infections: experience during and after hospitalization. Pediatr Infect Dis J. 2003;22(3):244–50. https://doi.org/10.1097/01.inf.0000055060.32226.8a.

    Article  PubMed  Google Scholar 

  2. Ferreras-Antolín L, Oligbu G, Okike IO, Ladhani S. Infection is associated with one in five childhood deaths in England and Wales: analysis of national death registrations data, 2013–15. Arch Dis Child. 2020;105(9):857–63. https://doi.org/10.1136/archdischild-2019-318001.

    Article  PubMed  Google Scholar 

  3. Troeger C, Blacker B, Khalil IA, Rao PC, Cao J, Zimsen SRM, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–210. https://doi.org/10.1016/S1473-3099(18)30310-4.

    Article  Google Scholar 

  4. Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98. https://doi.org/10.1128/CMR.00032-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behrooz L, Balekian DS, Faridi MK, Espinola JA, Townley LP, Camargo CA. Prenatal and postnatal tobacco smoke exposure and risk of severe bronchiolitis during infancy. Respir Med. 2018;140:21–6. https://doi.org/10.1016/j.rmed.2018.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bush NR, Savitz J, Coccia M, Jones-Mason K, Adler N, Boyce WT, et al. Maternal stress during pregnancy predicts infant infectious and noninfectious illness. J Pediatr. 2021;228:117-125.e2. https://doi.org/10.1016/j.jpeds.2020.08.041.

    Article  PubMed  Google Scholar 

  7. Gauthier TW, Drews-Botsch C, Falek A, Coles C, Brown LAS. Maternal alcohol abuse and neonatal infection. Clin Exp Res. 2005;29(6):1035–43. https://doi.org/10.1097/01.alc.0000167956.28160.5e.

    Article  Google Scholar 

  8. Goshen S, Novack L, Erez O, Yitshak-Sade M, Kloog I, Shtein A, et al. The effect of exposure to particulate matter during pregnancy on lower respiratory tract infection hospitalizations during first year of life. Environ Health. 2020;19(1):90. https://doi.org/10.1186/s12940-020-00645-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller JE, Goldacre R, Moore HC, Zeltzer J, Knight M, Morris C, et al. Mode of birth and risk of infection-related hospitalisation in childhood: a population cohort study of 7.17 million births from 4 high-income countries. PLoS Med. 2020;17(11): e1003429. https://doi.org/10.1371/journal.pmed.1003429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsao NW, Sayre EC, Hanley G, Sadatsafavi M, Lynd LD, Marra CA, et al. Risk of preterm delivery and small-for-gestational-age births in women with autoimmune disease using biologics before or during pregnancy: a population-based cohort study. Ann Rheum Dis. 2018;77(6):869–74. https://doi.org/10.1136/annrheumdis-2018-213023.

    Article  CAS  PubMed  Google Scholar 

  11. Williams EJ, Embleton ND, Bythell M, Ward Platt MP, Berrington JE. The changing profile of infant mortality from bacterial, viral and fungal infection over two decades. Acta Paediatr. 2013;102(10):999–1004. https://doi.org/10.1111/apa.12341.

    Article  PubMed  Google Scholar 

  12. Nakitanda AO, Kieler H, Odsbu I, Rhedin S, Almqvist C, Pasternak B, et al. In-utero antibiotic exposure and subsequent infections in infancy: a register-based cohort study with sibling analysis. Am J Obstet. 2023;5(4): 100860. https://doi.org/10.1016/j.ajogmf.2023.100860.

    Article  CAS  Google Scholar 

  13. Miller JE, Wu C, Pedersen LH, de Klerk N, Olsen J, Burgner DP. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018;47(2):561–71. https://doi.org/10.1093/ije/dyx272.

    Article  PubMed  Google Scholar 

  14. Zhou P, Zhou Y, Liu B, Jin Z, Zhuang X, Dai W, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere. 2020;5(1):e00984-e1019. https://doi.org/10.1128/mSphere.00984-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jess T, Morgen CS, Harpsøe MC, Sørensen TIA, Ajslev TA, Antvorskov JC, et al. Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep. 2019;9(1):11528. https://doi.org/10.1038/s41598-019-48065-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korpela K, Dikareva E, Hanski E, Kolho KL, de Vos WM, Salonen A. Cohort profile: Finnish health and early life microbiota (HELMi) longitudinal birth cohort. BMJ Open. 2019;9(6): e028500. https://doi.org/10.1136/bmjopen-2018-028500.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stearns JC, Simioni J, Gunn E, McDonald H, Holloway AC, Thabane L, et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. https://doi.org/10.1038/s41598-017-16606-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamousé-Smith ESN. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol. 2016;196(9):3768–79. https://doi.org/10.4049/jimmunol.1502322.

    Article  CAS  PubMed  Google Scholar 

  19. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129. https://doi.org/10.1038/srep23129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86. https://doi.org/10.1186/s12876-016-0498-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim H, Choe YJ, Cho H, Heo JS. Effect of prenatal antibiotic exposure on neonatal outcomes of preterm infants. Pediatr Infect Vaccine. 2021;28(3):149. https://doi.org/10.14776/piv.2021.28.e21.

    Article  Google Scholar 

  22. Cunha AJLA, Santos AC, Medronho RA, Barros H. Use of antibiotics during pregnancy is associated with infection in children at four years of age in Portugal. Acta Paediatr. 2021;110(6):1911–5. https://doi.org/10.1111/apa.15733.

    Article  PubMed  Google Scholar 

  23. Demailly R, Escolano S, Quantin C, Tubert-Bitter P, Ahmed I. Prescription drug use during pregnancy in France: a study from the national health insurance permanent sample. Pharmacoepidemiol Drug Saf. 2017;26(9):1126–34. https://doi.org/10.1002/pds.4265.

    Article  PubMed  Google Scholar 

  24. Bérard A, Abbas-Chorfa F, Kassai B, Vial T, Nguyen KA, Sheehy O, et al. The French Pregnancy Cohort: medication use during pregnancy in the French population. PLoS One. 2019;14(7): e0219095. https://doi.org/10.1371/journal.pone.0219095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tubiana S, Sibiude J, Herlemont P, et al. Trends in anti-infective use during pregnancy in France between 2010 and 2019: a nationwide population-based study. Br J Clin Pharmacol. 2023;89(5):1629–39. https://doi.org/10.1111/bcp.15638.

    Article  CAS  PubMed  Google Scholar 

  26. Glasgow TS, Young PC, Wallin J, Kwok C, Stoddard G, Firth S, et al. Association of intrapartum antibiotic exposure and late-onset serious bacterial infections in infants. Pediatrics. 2005;116(3):696–702. https://doi.org/10.1542/peds.2004-2421.

    Article  PubMed  Google Scholar 

  27. Wright AJ, Unger S, Coleman BL, Lam PP, McGeer AJ. Maternal antibiotic exposure and risk of antibiotic resistance in neonatal early-onset sepsis: a case–cohort study. Pediatr Infect Dis J. 2012;31(11):1206–8. https://doi.org/10.1097/INF.0b013e31826eb4f9.

    Article  PubMed  Google Scholar 

  28. Pedersen TM, Stokholm J, Thorsen J, Mora-Jensen ARC, Bisgaard H. Antibiotics in pregnancy increase children’s risk of otitis media and ventilation tubes. J Pediatr. 2017;183:153-158.e1. https://doi.org/10.1016/j.jpeds.2016.12.046.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen R, Gutvirtz G, Wainstock T, Sheiner E. Maternal urinary tract infection during pregnancy and long-term infectious morbidity of the offspring. Early Hum Dev. 2019;136:54–9. https://doi.org/10.1016/j.earlhumdev.2019.07.002.

    Article  PubMed  Google Scholar 

  30. Kim JH, Lee J, Kim DH, Park JY, Lee H, Kang HG, et al. Maternal antibiotic exposure during pregnancy is a risk factor for community-acquired urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in infants. Pediatr Nephrol. 2022;37(1):163–70. https://doi.org/10.1007/s00467-021-05163-z.

    Article  PubMed  Google Scholar 

  31. Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: owerful tools for pharmacoepidemiology. Pharmacoepidemiol Drug Saf. 2017;26(8):954–62. https://doi.org/10.1002/pds.4233.

    Article  PubMed  Google Scholar 

  32. Blotière PO, Weill A, Dalichampt M, Billionnet C, Mezzarobba M, Raguideau F, et al. Development of an algorithm to identify pregnancy episodes and related outcomes in health care claims databases: n application to antiepileptic drug use in 4.9 million pregnant women in France. Pharmacoepidemiol Drug Saf. 2018;27(7):763–70. https://doi.org/10.1002/pds.4556.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Collins A, Weitkamp JH, Wynn JL. Why are preterm newborns at increased risk of infection? Arch Dis Child Fetal Neonatal Ed. 2018;103(4):F391–4. https://doi.org/10.1136/archdischild-2017-313595.

    Article  PubMed  Google Scholar 

  34. Ukah UV, Aibibula W, Platt RW, Dayan N, Reynier P, Filion KB. Time-related biases in perinatal pharmacoepidemiology: systematic review of observational studies. Pharmacoepidemiol Drug Saf. 2022;31(12):1228–41. https://doi.org/10.1002/pds.5504.

    Article  PubMed  Google Scholar 

  35. Sahli L, Lapeyre-Mestre M, Derumeaux H, Moulis G. Positive predictive values of selected hospital discharge diagnoses to identify infections responsible for hospitalization in the French national hospital database. Pharmacoepidemiol Drug Saf. 2016;25(7):785–9. https://doi.org/10.1002/pds.4006.

    Article  PubMed  Google Scholar 

  36. Meyer A, Taine M, Drouin J, Weill A, Carbonnel F, Dray-Spira R. Serious infections in children born to mothers with inflammatory bowel disease with in utero exposure to thiopurines and anti-tumor necrosis factor. Clin Gastroenterol Hepatol. 2022;20(6):1269-1281.e9. https://doi.org/10.1016/j.cgh.2021.07.028.

    Article  CAS  PubMed  Google Scholar 

  37. Prevention of group B streptococcal early-onset disease in newborns: ACOG Committee Opinion, number 797. Obstet Gynecol. 2020;135(2):e51–72. https://doi.org/10.1097/AOG.0000000000003668 (Erratum in: Obstet Gynecol. 2020;135(4):978–979. PMID: 31977795).

  38. National Collaborating Centre for Women's and Children's Health (UK). Antibiotics for Early-Onset Neonatal Infection: Antibiotics for the Prevention and Treatment of Early-Onset Neonatal Infection. London: RCOG Press; 2012. (PMID: 23346609).

  39. Palosse-Cantaloube L, Hurault-Delarue C, Beau AB, Montastruc JL, Lacroix I, Damase-Michel C. Risk of infections during the first year of life after in utero exposure to drugs acting on immunity: population-based cohort study. Pharmacol Res. 2016;113:557–62. https://doi.org/10.1016/j.phrs.2016.09.028.

    Article  CAS  PubMed  Google Scholar 

  40. Ghosn W. Indicateurs écologiques synthétiques du niveau socio-économique pour la recherche en Santé. 2018. https://www.cepidc.inserm.fr/sites/default/files/2020-11/Note_indices_socioeco-2.pdf. Accessed 25 June 2023.

  41. Albrecht M, Arck PC. Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front Immunol. 2020;11:555. https://doi.org/10.3389/fimmu.2020.00555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7(5):379–90. https://doi.org/10.1038/nri2075.

    Article  CAS  PubMed  Google Scholar 

  43. Ygberg S, Nilsson A. The developing immune system—from foetus to toddler: eveloping immune systemfrom foetus to toddler. Acta Paediatr. 2012;101(2):120–7. https://doi.org/10.1111/j.1651-2227.2011.02494.x.

    Article  CAS  PubMed  Google Scholar 

  44. Nyangahu DD, Jaspan HB. Influence of maternal microbiota during pregnancy on infant immunity. Clin Exp Immunol. 2019;198(1):47–56. https://doi.org/10.1111/cei.13331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1–2):189–95. https://doi.org/10.1038/pr.2014.163.

    Article  PubMed  Google Scholar 

  46. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109–17. https://doi.org/10.1016/j.molmed.2014.12.002.

    Article  PubMed  Google Scholar 

  47. Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184(13):3394-3409.e20. https://doi.org/10.1016/j.cell.2021.04.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rackaityte E, Halkias J. Microbial exposure during early human development primes fetal immune cells. Front Immunol. 2020;11:588. https://doi.org/10.3389/fimmu.2020.00588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goenka A, Kollmann T. Development of immunity in early life. J Infect. 2015;71(Suppl1):S112–20. https://doi.org/10.1016/j.jinf.2015.04.027.

    Article  PubMed  Google Scholar 

  50. Loewen K, Monchka B, Mahmud SM, ’t Jong G, Azad MB. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J. 2018;52(1):1702070. https://doi.org/10.1183/13993003.02070-2017.

    Article  CAS  PubMed  Google Scholar 

  51. Wu P, Feldman AS, Rosas-Salazar C, James K, Escobar G, Gebretsadik T, et al. Relative importance and additive effects of maternal and infant risk factors on childhood asthma. PLoS One. 2016;11(3): e0151705. https://doi.org/10.1371/journal.pone.0151705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stokholm J, Sevelsted A, Bønnelykke K, Bisgaard H. Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study. Lancet Respir Med. 2014;2(8):631–7. https://doi.org/10.1016/S2213-2600(14)70152-3.

    Article  PubMed  Google Scholar 

  53. Ng SC, Peng Y, Zhang L, Mok CK, Zhao S, Li A, et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut. 2022;71(6):1106–16. https://doi.org/10.1136/gutjnl-2021-326563.

    Article  CAS  PubMed  Google Scholar 

  54. Lacroix I, Damase-Michel C, Lapeyre-Mestre M, Montastruc J. Prescription of drugs during pregnancy in France. Lancet. 2000;356(9243):1735–6. https://doi.org/10.1016/s0140-6736(00)03209-8.

    Article  CAS  PubMed  Google Scholar 

  55. de Jonge L, de Walle HEK, de Jong-van den Berg LTW, van Langen IM, Bakker MK. Actual use of medications prescribed during pregnancy: a cross-sectional study using data from a population-based congenital anomaly registry. Drug Saf. 2015;38(8):737–47. https://doi.org/10.1007/s40264-015-0302-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Størdal K, Lundeby KM, Brantsæter AL, Haugen M, Nakstad B, Lund-Blix NA, et al. Breast‐feeding and Infant Hospitalization for Infections: large cohort and sibling analysis. J Pediatr Gastroenterol Nutr. 2017;65(2):225–31. https://doi.org/10.1097/MPG.0000000000001539.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://doi.org/10.1016/S0140-6736(15)01024-7.

    Article  PubMed  Google Scholar 

  58. Tsao NW, Lynd LD, Sayre EC, Sadatsafavi M, Hanley G, De Vera MA. Use of biologics during pregnancy and risk of serious infections in the mother and baby: a Canadian population-based cohort study. BMJ Open. 2019;9(2): e023714. https://doi.org/10.1136/bmjopen-2018-023714.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Muenchhoff M, Goulder PJR. Sex differences in pediatric infectious diseases. J Infect Dis. 2014;209(suppl 3):S120–6. https://doi.org/10.1093/infdis/jiu232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll KN, Gebretsadik T, Minton P, Woodward K, Liu Z, Miller EK, et al. Influence of maternal asthma on the cause and severity of infant acute respiratory tract infections. J Allergy Clin Immunol. 2012;129(5):1236–42. https://doi.org/10.1016/j.jaci.2012.01.045.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylène Tisseyre.

Ethics declarations

Funding

No funding was received for conducting this study.

Conflict of interest

All authors have no example conflicts of interest to disclose.

Availability of data and material

Data sharing is not applicable to this article, as the datasets used are based on pseudoanonymized data that are protected by agreements with the French Data Protection Commission (CNIL; Commission Nationale de l’Informatique et Liberté).

Ethics approval

This study was approved by the French Data Protection Commission (CNIL; Commission Nationale de l’Informatique et Liberté; agreement DE-2015-192) and the French Committee for the Protection of Healthcare Data (CERESS; Comité spécifique de Recherche sur les Données de Santé). In agreements with French regulations, observational studies conducted on anonymous medico-administrative data do not require an ethics committee approval.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Code is available upon reasonable request to the authors.

Author contributions

M. Tisseyre conceptualized and designed the study, collected data, carried out the initial analyses, analyzed the results, drafted the initial manuscript, and critically revised the manuscript. M. Collier designed the data collection instruments, carried out the initial analyses, and critically reviewed the manuscript. N. Beeker designed the data collection instruments and critically reviewed the manuscript. F. Kaguelidou and JM. Treluyer reviewed the study design, analyzed the results, and critically reviewed the manuscript for important intellectual content. L. Chouchana conceptualized and designed the study, analyzed the results, drafted the initial manuscript, and critically reviewed and revised the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1518 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tisseyre, M., Collier, M., Beeker, N. et al. In Utero Exposure to Antibiotics and Risk of Serious Infections in the First Year of Life. Drug Saf 47, 453–464 (2024). https://doi.org/10.1007/s40264-024-01401-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-024-01401-z

Navigation