Skip to main content
Log in

Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009–2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene–gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015;135(4):e994–1001.

    PubMed  Google Scholar 

  2. Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry. 2015;56(3):345–65.

    PubMed  Google Scholar 

  3. Wolraich ML, Hagan JF Jr, Allan C, Chan E, Davison D, Earls M, et al. Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics. 2019;144(4):1–22.

    Google Scholar 

  4. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Association; 2013.

  5. Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5(9):727–38.

    PubMed  PubMed Central  Google Scholar 

  6. Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Modifiers of long-term school outcomes for children with attention-deficit/hyperactivity disorder: does treatment with stimulant medication make a difference? Results from a population-based study. J Dev Behav Pediatr. 2007;28(4):274–86.

    PubMed  Google Scholar 

  7. Scheffler RM, Brown TT, Fulton BD, Hinshaw SP, Levine P, Stone S. Positive association between attention-deficit/hyperactivity disorder medication use and academic achievement during elementary school. Pediatrics. 2009;123(5):1273–9.

    PubMed  Google Scholar 

  8. Chang Z, Lichtenstein P, D’Onofrio BM, Sjolander A, Larsson H. Serious transport accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a population-based study. JAMA Psychiatry. 2014;71(3):319–25.

    PubMed  PubMed Central  Google Scholar 

  9. Chang Z, Quinn PD, Hur K, Gibbons RD, Sjolander A, Larsson H, et al. Association between medication use for attention-deficit/hyperactivity disorder and risk of motor vehicle crashes. JAMA Psychiatry. 2017;74(6):597–603.

    PubMed  PubMed Central  Google Scholar 

  10. Dalsgaard S, Leckman JF, Mortensen PB, Nielsen HS, Simonsen M. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry. 2015;2(8):702–9.

    PubMed  Google Scholar 

  11. Chang Z, D’Onofrio BM, Quinn PD, Lichtenstein P, Larsson H. Medication for attention-deficit/hyperactivity disorder and risk for depression: a nationwide longitudinal cohort study. Biol Psychiatry. 2016;80(12):916–22.

    PubMed  PubMed Central  Google Scholar 

  12. Lichtenstein P, Halldner L, Zetterqvist J, Sjolander A, Serlachius E, Fazel S, et al. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med. 2012;367(21):2006–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowe N, Barry E, Gill M, Hawi Z. An overview of the pharmacogenetics and molecular genetics of ADHD. Curr Pharmacogenomics. 2006;4:231–43.

    CAS  Google Scholar 

  14. Stein MA, McGough JJ. The pharmacogenomic era: promise for personalizing attention deficit hyperactivity disorder therapy. Child Adolesc Psychiatric Clin N Am. 2008;17(2):475–90 (xi-xii).

    Google Scholar 

  15. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Clinical Pharmacogenetics Implementation Consortium. Guidelines. 2019. https://cpicpgx.org/guidelines. Accessed 10 Apr 2019.

  17. Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106.

    CAS  PubMed  Google Scholar 

  18. Shuldiner AR, Palmer K, Pakyz RE, Alestock TD, Maloney KA, O’Neill C, et al. Implementation of pharmacogenetics: the University of Maryland Personalized Anti-platelet Pharmacogenetics Program. Am J Med Genet C Semin Med Genet. 2014;166C(1):76–84.

    PubMed  Google Scholar 

  19. U.S Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. 2019. https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling. Accessed 19 Dec 2019.

  20. Froehlich TE, McGough JJ, Stein MA. Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs. 2010;24(2):99–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61.

    CAS  PubMed  Google Scholar 

  22. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;94(1):127–52.

    CAS  PubMed  Google Scholar 

  23. Faraone SV. The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018;87:255–70.

    CAS  PubMed  Google Scholar 

  24. Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvili NY, Zou Q, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther. 2004;310(2):469–76.

    CAS  PubMed  Google Scholar 

  25. Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M. Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology. 2009;57(7–8):731–3.

    CAS  PubMed  Google Scholar 

  26. Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82(6):1241–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stage C, Jurgens G, Guski LS, Thomsen R, Bjerre D, Ferrero-Miliani L, et al. The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects. Br J Clin Pharmacol. 2017;83(7):1506–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaddurah-Daouk R, Hankemeier T, Scholl EH, Baillie R, Harms A, Stage C, et al. Pharmacometabolomics informs about pharmacokinetic profile of methylphenidate. CPT Pharmacometrics Syst Pharmacol. 2018;7(8):525–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson KA, Barry E, Lambert D, Fitzgerald M, McNicholas F, Kirley A, et al. Methylphenidate side effect profile is influenced by genetic variation in the attention-deficit/hyperactivity disorder-associated CES1 gene. J Child Adolesc Psychopharmacol. 2013;23(10):655–64.

    CAS  PubMed  Google Scholar 

  30. Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience. New York: The McGraw-Hill Companies, Inc.; 2001.

    Google Scholar 

  31. Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct. 2005;1(1):2.

    PubMed  PubMed Central  Google Scholar 

  32. Andrews GD, Lavin A. Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology. 2006;31(3):594–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hegvik TA, Jacobsen KK, Fredriksen M, Zayats T, Haavik J. A candidate gene investigation of methylphenidate response in adult attention-deficit/hyperactivity disorder patients: results from a naturalistic study. J Neural Transm (Vienna). 2016;123(8):859–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lario S, Calls J, Cases A, Oriola J, Torras A, Rivera F. MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet. 1997;51(2):129–30.

    CAS  PubMed  Google Scholar 

  35. Froehlich TE, Epstein JN, Nick TG, Melguizo Castro MS, Stein MA, Brinkman WB, et al. Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50(11):1129–1139.e2.

    PubMed  PubMed Central  Google Scholar 

  36. Kim BN, Cummins TD, Kim JW, Bellgrove MA, Hong SB, Song SH, et al. Val/Val genotype of brain-derived neurotrophic factor (BDNF) Val(6)(6)Met polymorphism is associated with a better response to OROS-MPH in Korean ADHD children. Int J Neuropsychopharmacol. 2011;14(10):1399–410.

    CAS  PubMed  Google Scholar 

  37. Hong SB, Kim JW, Cho SC, Shin MS, Kim BN, Yoo HJ. Dopaminergic and noradrenergic gene polymorphisms and response to methylphenidate in korean children with attention-deficit/hyperactivity disorder: is there an interaction? J Child Adolesc Psychopharmacol. 2012;22(5):343–52.

    CAS  PubMed  Google Scholar 

  38. Park S, Kim JW, Kim BN, Hong SB, Shin MS, Yoo HJ, et al. No significant association between the alpha-2A-adrenergic receptor gene and treatment response in combined or inattentive subtypes of attention-deficit hyperactivity disorder. Pharmacopsychiatry. 2013;46(5):169–74.

    CAS  PubMed  Google Scholar 

  39. Gomez-Sanchez CI, Carballo JJ, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Mahillo-Fernandez I, et al. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: long-term effects. Sci Rep. 2017;7(1):10391.

    PubMed  PubMed Central  Google Scholar 

  40. Cheon KA, Cho DY, Koo MS, Song DH, Namkoong K. Association between homozygosity of a G allele of the alpha-2a-adrenergic receptor gene and methylphenidate response in Korean children and adolescents with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2009;65(7):564–70.

    CAS  PubMed  Google Scholar 

  41. Huang HC, Wu LS, Yu SC, Wu BJ, Lua AC, Lee SM, et al. The alpha-2A adrenergic receptor gene -1291C/G single nucleotide polymorphism is associated with the efficacy of methylphenidate in treating Taiwanese children and adolescents with attention-deficit hyperactivity disorder. Psychiatry Investig. 2018;15(3):306–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Unal D, Unal MF, Alikasifoglu M, Cetinkaya A. Genetic variations in attention deficit hyperactivity disorder subtypes and treatment resistant cases. Psychiatry Investig. 2016;13(4):427–33.

    PubMed  PubMed Central  Google Scholar 

  43. Myer NM, Boland JR, Faraone SV. Pharmacogenetics predictors of methylphenidate efficacy in childhood ADHD. Mol Psychiatry. 2018;23(9):1929–36.

    CAS  PubMed  Google Scholar 

  44. Kim BN, Kim JW, Cummins TD, Bellgrove MA, Hawi Z, Hong SB, et al. Norepinephrine genes predict response time variability and methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder. J Clin Psychopharmacol. 2013;33(3):356–62.

    CAS  PubMed  Google Scholar 

  45. Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, et al. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem. 2009;110(3):1058–69.

    CAS  PubMed  Google Scholar 

  46. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci. 2004;24(45):10099–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho BC, Milev P, O’Leary DS, Librant A, Andreasen NC, Wassink TH. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch Gen Psychiatry. 2006;63(7):731–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Flanagin BA, Cook EH Jr, de Wit H. An association study of the brain-derived neurotrophic factor Val66Met polymorphism and amphetamine response. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(6):576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Napolitano A, Cesura AM, Da Prada M. The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J Neural Transm Suppl. 1995;45:35–45.

    CAS  PubMed  Google Scholar 

  50. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–50.

    CAS  PubMed  Google Scholar 

  51. McGough JJ, McCracken JT, Loo SK, Manganiello M, Leung MC, Tietjens JR, et al. A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2009;48(12):1155–64.

    PubMed  PubMed Central  Google Scholar 

  52. Park S, Kim JW, Kim BN, Shin MS, Yoo HJ, Cho SC. Catechol-O-methyltransferase Val158-Met polymorphism and a response of hyperactive-impulsive symptoms to methylphenidate: a replication study from South Korea. J Psychopharmacol. 2014;28(7):671–6.

    PubMed  Google Scholar 

  53. Pagerols M, Richarte V, Sanchez-Mora C, Garcia-Martinez I, Corrales M, Corominas M, et al. Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. Pharmacogenomics J. 2017;17(1):98–104.

    CAS  PubMed  Google Scholar 

  54. Yatsuga C, Toyohisa D, Fujisawa TX, Nishitani S, Shinohara K, Matsuura N, et al. No association between catechol-O-methyltransferase (COMT) genotype and attention deficit hyperactivity disorder (ADHD) in Japanese children. Brain Dev. 2014;36(7):620–5.

    PubMed  Google Scholar 

  55. Salatino-Oliveira A, Genro JP, Zeni C, Polanczyk GV, Chazan R, Guimaraes AP, et al. Catechol-O-methyltransferase valine158methionine polymorphism moderates methylphenidate effects on oppositional symptoms in boys with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;70(3):216–21.

    CAS  PubMed  Google Scholar 

  56. Kaufman S, Friedman S. Dopamine-beta-hydroxylase. Pharmacol Rev. 1965;17:71–100.

    CAS  PubMed  Google Scholar 

  57. Ribases M, Ramos-Quiroga JA, Hervas A, Sanchez-Mora C, Bosch R, Bielsa A, et al. Candidate system analysis in ADHD: evaluation of nine genes involved in dopaminergic neurotransmission identifies association with DRD1. World J Biol Psychiatry. 2012;13(4):281–92.

    PubMed  Google Scholar 

  58. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;12(282):13–22.

    Google Scholar 

  59. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7(6):479–84.

    CAS  PubMed  Google Scholar 

  60. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry. 1998;3(3):256–60.

    CAS  PubMed  Google Scholar 

  61. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA. 2007;104(51):20552–7.

    CAS  PubMed  Google Scholar 

  62. Wu J, Xiao H, Sun H, Zou L, Zhu LQ. Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol. 2012;45(3):605–20.

    CAS  PubMed  Google Scholar 

  63. Jeanneteau F, Funalot B, Jankovic J, Deng H, Lagarde JP, Lucotte G, et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci USA. 2006;103(28):10753–8.

    CAS  PubMed  Google Scholar 

  64. Fageera W, Sengupta SM, Labbe A, Grizenko N, Joober R. DRD3 gene and ADHD: a pharmaco-behavioural genetic study. Neuromolecular Med. 2018;20(4):515–24.

    CAS  PubMed  Google Scholar 

  65. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.

    CAS  PubMed  Google Scholar 

  66. Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1091–9.

    CAS  PubMed  Google Scholar 

  67. Pappa I, Mileva-Seitz VR, Bakermans-Kranenburg MJ, Tiemeier H, Van IMH. The magnificent seven: a quantitative review of dopamine receptor d4 and its association with child behavior. Neurosci Biobehav Rev. 2015;57:175–86.

    CAS  PubMed  Google Scholar 

  68. Naumova D, Grizenko N, Sengupta SM, Joober R. DRD4 exon 3 genotype and ADHD: randomised pharmacodynamic investigation of treatment response to methylphenidate. World J Biol Psychiatry. 2017;15:1–10.

    Google Scholar 

  69. Ji HS, Paik KC, Park WS, Lim MH. No association between the response to methylphenidate and DRD4 gene polymorphism in Korean attention deficit hyperactivity disorder: a case control study. Clin Psychopharmacol Neurosci. 2013;11(1):13–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. D’Souza UM, Russ C, Tahir E, Mill J, McGuffin P, Asherson PJ, et al. Functional effects of a tandem duplication polymorphism in the 5′flanking region of the DRD4 gene. Biol Psychiatry. 2004;56(9):691–7.

    PubMed  Google Scholar 

  71. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord. 2002;6(Suppl 1):S31–43.

    PubMed  Google Scholar 

  72. Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry. 1999;38(12):1474–7.

    CAS  PubMed  Google Scholar 

  73. Stein MA, Waldman I, Newcorn J, Bishop J, Kittles R, Cook EH Jr. Dopamine transporter genotype and stimulant dose-response in youth with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2014;24(5):238–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kambeitz J, Romanos M, Ettinger U. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogenom J. 2014;14(1):77–84.

    CAS  Google Scholar 

  75. Soleimani R, Salehi Z, Soltanipour S, Hasandokht T, Jalali MM. SLC6A3 polymorphism and response to methylphenidate in children with ADHD: a systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2018;177(3):287–300.

    CAS  PubMed  Google Scholar 

  76. Brookes KJ, Neale BM, Sugden K, Khan N, Asherson P, D’Souza UM. Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(8):1070–8.

    CAS  PubMed  Google Scholar 

  77. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D, et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010;15(11):1053–66.

    CAS  PubMed  Google Scholar 

  78. Song J, Kim SW, Hong HJ, Lee MG, Lee BW, Choi TK, et al. Association of SNAP-25, SLC6A2, and LPHN3 with OROS methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin Neuropharmacol. 2014;37(5):136–41.

    CAS  PubMed  Google Scholar 

  79. Bruxel EM, Salatino-Oliveira A, Akutagava-Martins GC, Tovo-Rodrigues L, Genro JP, Zeni CP, et al. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. Genes Brain Behav. 2015;14(5):419–27.

    CAS  PubMed  Google Scholar 

  80. Labbe A, Liu A, Atherton J, Gizenko N, Fortier ME, Sengupta SM, et al. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(7):776–85.

    PubMed  Google Scholar 

  81. Choudhry Z, Sengupta SM, Grizenko N, Fortier ME, Thakur GA, Bellingham J, et al. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry. 2012;53(8):892–902.

    PubMed  Google Scholar 

  82. Jain M, Velez JI, Acosta MT, Palacio LG, Balog J, Roessler E, et al. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol Psychiatry. 2012;17(7):741–7.

    CAS  PubMed  Google Scholar 

  83. Fisher NM, Seto M, Lindsley CW, Niswender CM. Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders. Front Mol Neurosci. 2018;11:387.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Park S, Kim BN, Cho SC, Kim JW, Kim JI, Shin MS, et al. The metabotropic glutamate receptor subtype 7 rs3792452 polymorphism is associated with the response to methylphenidate in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2014;24(4):223–7.

    CAS  PubMed  Google Scholar 

  85. Mick E, Neale B, Middleton FA, McGough JJ, Faraone SV. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1412–8.

    CAS  PubMed  Google Scholar 

  86. Pagerols M, Richarte V, Sanchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martinez I, et al. Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep. 2018;8(1):1881.

    PubMed  PubMed Central  Google Scholar 

  87. National Center for Biotechnology Information. Database of Single Nucleotide Polymorphisms (dbSNP) U.S. National Library of Medicine.

  88. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3(5):465–71.

    CAS  PubMed  Google Scholar 

  89. Carboni E, Silvagni A, Vacca C, Di Chiara G. Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. J Neurochem. 2006;96(2):473–81.

    CAS  PubMed  Google Scholar 

  90. Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1397–409.

    CAS  PubMed  Google Scholar 

  91. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry. 2006;60(10):1111–20.

    CAS  PubMed  Google Scholar 

  92. Jonsson EG, Nothen MM, Gustavsson JP, Neidt H, Bunzel R, Propping P, et al. Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Psychiatry Res. 1998;79(1):1–9.

    CAS  PubMed  Google Scholar 

  93. Kim BN, Kim JW, Hong SB, Cho SC, Shin MS, Yoo HJ. Possible association of norepinephrine transporter -3081(A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav Brain Funct. 2010;7(6):57.

    Google Scholar 

  94. Lee SH, Kim SW, Lee MG, Yook KH, Greenhill LL, Fradin KN, et al. Lack of association between response of OROS-methylphenidate and norepinephrine transporter (SLC6A2) polymorphism in Korean ADHD. Psychiatry Res. 2011;186(2–3):338–44.

    CAS  PubMed  Google Scholar 

  95. Angyal N, Horvath EZ, Tarnok Z, Richman MJ, Bognar E, Lakatos K, et al. Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):122–8.

    CAS  PubMed  Google Scholar 

  96. Song J, Song DH, Jhung K, Cheon KA. Norepinephrine transporter gene (SLC6A2) is involved with methylphenidate response in Korean children with attention deficit hyperactivity disorder. Int Clin Psychopharmacol. 2011;26(2):107–13.

    PubMed  Google Scholar 

  97. Park MH, Kim JW, Yang YH, Hong SB, Park S, Kang H, et al. Regional brain perfusion before and after treatment with methylphenidate may be associated with the G1287A polymorphism of the norepinephrine transporter gene in children with attention-deficit/hyperactivity disorder. Neurosci Lett. 2012;514(2):159–63.

    CAS  PubMed  Google Scholar 

  98. Sigurdardottir HL, Kranz GS, Rami-Mark C, James GM, Vanicek T, Gryglewski G, et al. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET. Hum Brain Mapp. 2016;37(3):884–95.

    PubMed  Google Scholar 

  99. Thakur GA, Sengupta SM, Grizenko N, Choudhry Z, Joober R. Comprehensive phenotype/genotype analyses of the norepinephrine transporter gene (SLC6A2) in ADHD: relation to maternal smoking during pregnancy. PLoS One. 2012;7(11):e49616.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci. 2016;132(2):115–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wanchoo SJ, Swann AC, Dafny N. Descending glutamatergic pathways of PFC are involved in acute and chronic action of methylphenidate. Brain Res. 2009;8(1301):68–79.

    Google Scholar 

  102. dbSNP short genetic variations rs2284411 reference SNP report. [cited 2019 August 15]. https://www.ncbi.nlm.nih.gov/snp/rs2284411#publications.

  103. Kim JI, Kim JW, Park JE, Park S, Hong SB, Han DH, et al. Association of the GRIN2B rs2284411 polymorphism with methylphenidate response in attention-deficit/hyperactivity disorder. J Psychopharmacol. 2017;31(8):1070–7.

    CAS  PubMed  Google Scholar 

  104. Fishbein DH, Lozovsky D, Jaffe JH. Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol Psychiatry. 1989;25(8):1049–66.

    CAS  PubMed  Google Scholar 

  105. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527–31.

    CAS  PubMed  Google Scholar 

  106. Hanna GL, Himle JA, Curtis GC, Koram DQ, Veenstra-VanderWeele J, Leventhal BL, et al. Serotonin transporter and seasonal variation in blood serotonin in families with obsessive-compulsive disorder. Neuropsychopharmacology. 1998;18(2):102–11.

    CAS  PubMed  Google Scholar 

  107. Thakur GA, Grizenko N, Sengupta SM, Schmitz N, Joober R. The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry. 2010;10:50.

    PubMed  PubMed Central  Google Scholar 

  108. Park SY, Kim EJ, Cheon KA. Association between 5-HTTLPR polymorphism and tics after treatment with methylphenidate in Korean children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2015;25(8):633–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zeni CP, Guimaraes AP, Polanczyk GV, Genro JP, Roman T, Hutz MH, et al. No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144(3):391–4.

    Google Scholar 

  110. Tharoor H, Lobos EA, Todd RD, Reiersen AM. Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(4):527–30.

    PubMed  Google Scholar 

  111. Seeger G, Schloss P, Schmidt MH. Marker gene polymorphisms in hyperkinetic disorder–predictors of clinical response to treatment with methylphenidate? Neurosci Lett. 2001;313(1–2):45–8.

    CAS  PubMed  Google Scholar 

  112. Schiavo G, Stenbeck G, Rothman JE, Sollner TH. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci USA. 1997;94(3):997–1001.

    CAS  PubMed  Google Scholar 

  113. McGough J, McCracken J, Swanson J, Riddle M, Kollins S, Greenhill L, et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry. 2006;45(11):1314–22.

    PubMed  Google Scholar 

  114. Nagatsu T, Levitt M, Udenfriend S. Conversion of l-tyrosine to 3,4-dihydroxyphenylalanine by cell-free preparations of brain and sympathetically innervated tissues. Biochem Biophys Res Commun. 1964;14:543–9.

    CAS  PubMed  Google Scholar 

  115. Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–7.

    CAS  PubMed  Google Scholar 

  116. Wang L, Li B, Lu X, Zhao Q, Li Y, Ge D, et al. A functional intronic variant in the tyrosine hydroxylase (TH) gene confers risk of essential hypertension in the Northern Chinese Han population. Clin Sci (Lond). 2008;115(5):151–8.

    CAS  PubMed  Google Scholar 

  117. Hohman TJ, Bush WS, Jiang L, Brown-Gentry KD, Torstenson ES, Dudek SM, et al. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging. 2016;38:141–50.

    CAS  PubMed  Google Scholar 

  118. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm (Vienna). 2008;115(11):1573–85.

    CAS  PubMed  Google Scholar 

  119. Lyon GJ, Jiang T, Van Wijk R, Wang W, Bodily PM, Xing J, et al. Exome sequencing and unrelated findings in the context of complex disease research: ethical and clinical implications. Discov Med. 2011;12(62):41–55.

    PubMed  PubMed Central  Google Scholar 

  120. Lugowska A, Mierzewska H, Bekiesinska-Figatowska M, Szczepanik E, Goszczanska-Ciuchta A, Bednarska-Makaruk M. A homozygote for the c.459 + 1G > A mutation in the ARSA gene presents with cerebellar ataxia as the only first clinical sign of metachromatic leukodystrophy. J Neurol Sci. 2014;338(1–2):214–7.

    CAS  PubMed  Google Scholar 

  121. Steingard R, Taskiran S, Connor DF, Markowitz JS, Stein MA. New formulations of stimulants: an update for clinicians. J Child Adolesc Psychopharmacol. 2019;29(5):324–39.

    PubMed  Google Scholar 

  122. Wu D, Otton SV, Inaba T, Kalow W, Sellers EM. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol. 1997;53(11):1605–12.

    CAS  PubMed  Google Scholar 

  123. Gehlert DR, Gackenheimer SL, Robertson DW. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for norepinephrine reuptake sites. Neurosci Lett. 1993;157(2):203–6.

    CAS  PubMed  Google Scholar 

  124. Wong DT, Threlkeld PG, Best KL, Bymaster FP. A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther. 1982;222(1):61–5.

    CAS  PubMed  Google Scholar 

  125. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.

    CAS  PubMed  Google Scholar 

  126. Ring BJ, Gillespie JS, Eckstein JA, Wrighton SA. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos. 2002;30(3):319–23.

    CAS  PubMed  Google Scholar 

  127. Yu G, Li GF, Markowitz JS. Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol. 2016;26(4):314–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ramoz N, Boni C, Downing AM, Close SL, Peters SL, Prokop AM, et al. A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology. 2009;34(9):2135–42.

    CAS  PubMed  Google Scholar 

  129. Michelson D, Read HA, Ruff DD, Witcher J, Zhang S, McCracken J. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry. 2007;46(2):242–51.

    PubMed  Google Scholar 

  130. Trzepacz PT, Williams DW, Feldman PD, Wrishko RE, Witcher JW, Buitelaar JK. CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol. 2008;18(2):79–86.

    CAS  PubMed  Google Scholar 

  131. Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC, et al. Clinical Pharmacogenetics Implementation Consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther. 2019;106(1):94–102.

    PubMed  Google Scholar 

  132. Fang Y, Ji N, Cao Q, Su Y, Chen M, Wang Y, et al. Variants of dopamine beta hydroxylase gene moderate atomoxetine response in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2015;25(8):625–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Easton N, Steward C, Marshall F, Fone K, Marsden C. Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007;52(2):405–14.

    CAS  PubMed  Google Scholar 

  134. Yang L, Qian Q, Liu L, Li H, Faraone SV, Wang Y. Adrenergic neurotransmitter system transporter and receptor genes associated with atomoxetine response in attention-deficit hyperactivity disorder children. J Neural Transm (Vienna). 2013;120(7):1127–33.

    CAS  PubMed  Google Scholar 

  135. Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5′ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem. 1999;274(10):6507–18.

    CAS  PubMed  Google Scholar 

  136. Briars L, Todd T. A review of pharmacological management of attention-deficit/hyperactivity disorder. J Pediatr Pharmacol Ther. 2016;21(3):192–206.

    PubMed  PubMed Central  Google Scholar 

  137. Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF. CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010;38(9):1393–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Polanczyk G, Faraone SV, Bau CH, Victor MM, Becker K, Pelz R, et al. The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1419–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010;11(5):356–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, Contini V, Kieling C, Hutz MH, et al. ADHD pharmacogenetics across the life cycle: new findings and perspectives. Am J Med Genet B Neuropsychiatr Genet. 2014;165(4):263–82.

    CAS  Google Scholar 

  141. Wehry AM, Ramsey L, Dulemba SE, Mossman SA, Strawn JR. Pharmacogenomic testing in child and adolescent psychiatry: an evidence-based review. Curr Probl Pediatr Adolesc Health Care. 2018;48(2):40–9.

    PubMed  PubMed Central  Google Scholar 

  142. Children’s Oncology Group. 2019. https://childrensoncologygroup.org/. Accessed 10 Dec 2019.

  143. Duclot F, Kabbaj M. Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants. J Exp Biol. 2015;218(Pt 1):21–31.

    PubMed  PubMed Central  Google Scholar 

  144. Menke A, Binder EB. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin Neurosci. 2014;16(3):395–404.

    PubMed  PubMed Central  Google Scholar 

  145. Tadic A, Muller-Engling L, Schlicht KF, Kotsiari A, Dreimuller N, Kleimann A, et al. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. 2014;19(3):281–3.

    CAS  PubMed  Google Scholar 

  146. Lopez JP, Mamdani F, Labonte B, Beaulieu MM, Yang JP, Berlim MT, et al. Epigenetic regulation of BDNF expression according to antidepressant response. Mol Psychiatry. 2013;18(4):398–9.

    CAS  PubMed  Google Scholar 

  147. Yehuda R, Daskalakis NP, Desarnaud F, Makotkine I, Lehrner AL, Koch E, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry. 2013;4:118.

    PubMed  PubMed Central  Google Scholar 

  148. Tang H, Dalton CF, Srisawat U, Zhang ZJ, Reynolds GP. Methylation at a transcription factor-binding site on the 5-HT1A receptor gene correlates with negative symptom treatment response in first episode schizophrenia. Int J Neuropsychopharmacol. 2014;17(4):645–9.

    CAS  PubMed  Google Scholar 

  149. Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, et al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry. 2013;3(3):e300.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Domschke K, Tidow N, Schwarte K, Deckert J, Lesch KP, Arolt V, et al. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol. 2014;17(8):1167–76.

    CAS  PubMed  Google Scholar 

  151. Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord. 2016;18(5):423–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry. 2018;2(81):38–49.

    Google Scholar 

  153. Sugawara H, Bundo M, Ishigooka J, Iwamoto K, Kato T. Epigenetic regulation of serotonin transporter in psychiatric disorders. J Genet Genom. 2013;40(7):325–9.

    CAS  Google Scholar 

  154. Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2015;168(8):687–96.

    CAS  PubMed  Google Scholar 

  155. Rukova B, Staneva R, Hadjidekova S, Stamenov G, Milanova V, Toncheva D. Whole genome methylation analyses of schizophrenia patients before and after treatment. Biotechnol Biotechnol Equip. 2014;28(3):518–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis. 2009;35(2):165–76.

    CAS  PubMed  Google Scholar 

  157. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry. 2007;12(10):934–45.

    CAS  PubMed  Google Scholar 

  158. Abo R, Hebbring S, Ji Y, Zhu H, Zeng ZB, Batzler A, et al. Merging pharmacometabolomics with pharmacogenomics using ‘1000 Genomes’ single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenet Genom. 2012;22(4):247–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya E. Froehlich.

Ethics declarations

Funding

No funding was received for the preparation of this manuscript.

Conflict of interest

TF is the principal investigator for a National Institutes of Mental Health (NIMH) award relating to methylphenidate. This NIMH funding is awarded to TF’s institution (so she does not receive any funding directly for this grant), and NIMH is a US government agency that does not have any financial stake in methylphenidate. NE and KY have no potential conflicts of interest to report.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, N.A., Yamamoto, K.M. & Froehlich, T.E. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 34, 389–414 (2020). https://doi.org/10.1007/s40263-020-00702-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00702-y

Navigation