Skip to main content
Log in

The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value.

Objectives

This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis.

Methods

A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model.

Results

A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G.

Conclusions

The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118. https://doi.org/10.1016/s0162-3109(00)00188-0.

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Bai H, Jin H, Zhang T, Shi B, Cai M, et al. Outcomes in kidney transplantation with mycophenolate mofetil-based maintenance immunosuppression in China: a large-sample retrospective analysis of a national database. Transpl Int. 2020;33(7):718–28. https://doi.org/10.1111/tri.13566.

    Article  CAS  PubMed  Google Scholar 

  3. D’Addio F, Margonato D, Pensato U, Borgese L, Potena L, Fiorina P. Novel therapeutic and diagnostic management of heart transplant patients. Heart Lung Vessel. 2015;7(3):198–207.

    PubMed  PubMed Central  Google Scholar 

  4. Kaltenborn A, Schrem H. Mycophenolate mofetil in liver transplantation: a review. Ann Transplant. 2013;18:685–96. https://doi.org/10.12659/aot.889299.

    Article  CAS  PubMed  Google Scholar 

  5. Arns W, Breuer S, Choudhury S, Taccard G, Lee J, Binder V, et al. Enteric-coated mycophenolate sodium delivers bioequivalent MPA exposure compared with mycophenolate mofetil. Clin Transplant. 2005;19(2):199–206. https://doi.org/10.1111/j.1399-0012.2004.00318.x.

    Article  PubMed  Google Scholar 

  6. Tett SE, Saint-Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando). 2011;25(2):47–57. https://doi.org/10.1016/j.trre.2010.06.001.

    Article  Google Scholar 

  7. van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–15. https://doi.org/10.1111/tri.12554.

    Article  CAS  PubMed  Google Scholar 

  8. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–55. https://doi.org/10.2165/00003088-199834060-00002.

    Article  CAS  PubMed  Google Scholar 

  9. Filler G, Alvarez-Elías AC, McIntyre C, Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 2017;32(1):21–9. https://doi.org/10.1007/s00467-016-3352-2.

    Article  PubMed  Google Scholar 

  10. Shaw LM, Kaplan B, DeNofrio D, Korecka M, Brayman KL. Pharmacokinetics and concentration-control investigations of mycophenolic acid in adults after transplantation. Ther Drug Monit. 2000;22(1):14–9. https://doi.org/10.1097/00007691-200002000-00003.

    Article  CAS  PubMed  Google Scholar 

  11. Dasgupta A. Therapeutic drug monitoring of mycophenolic acid. Adv Clin Chem. 2016;76:165–84. https://doi.org/10.1016/bs.acc.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  12. Kuypers DR, Le Meur Y, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010;5(2):341–58. https://doi.org/10.2215/cjn.07111009.

    Article  CAS  PubMed  Google Scholar 

  13. Glander P, Sommerer C, Arns W, Ariatabar T, Kramer S, Vogel EM, et al. Pharmacokinetics and pharmacodynamics of intensified versus standard dosing of mycophenolate sodium in renal transplant patients. Clin J Am Soc Nephrol. 2010;5(3):503–11. https://doi.org/10.2215/cjn.06050809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiberd BA, Lawen J, Fraser AD, Keough-Ryan T, Belitsky P. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant. 2004;4(7):1079–83. https://doi.org/10.1111/j.1600-6143.2004.00455.x.

    Article  CAS  PubMed  Google Scholar 

  15. Kulabusaya B, Vadcharavivad S, Avihingsanon Y, van Gelder T, Praditpornsilpa K. Early pharmacokinetics of low dosage mycophenolate exposure in Thai kidney transplant recipients. Int J Clin Pharm. 2019;41(4):1047–55. https://doi.org/10.1007/s11096-019-00848-w.

    Article  CAS  PubMed  Google Scholar 

  16. van Gelder T, Silva HT, de Fijter JW, Budde K, Kuypers D, Tyden G, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86(8):1043–51. https://doi.org/10.1097/TP.0b013e318186f98a.

    Article  CAS  PubMed  Google Scholar 

  17. Metz DK, Holford N, Kausman JY, Walker A, Cranswick N, Staatz CE, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention. Transplantation. 2019;103(10):2012–30. https://doi.org/10.1097/tp.0000000000002762.

    Article  CAS  PubMed  Google Scholar 

  18. Betonico GN, Abudd-Filho M, Goloni-Bertollo EM, Pavarino-Bertelli E. Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J Nephrol. 2008;21(4):503–9.

    CAS  PubMed  Google Scholar 

  19. van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol. 2014;10(12):725–31. https://doi.org/10.1038/nrneph.2014.172.

    Article  CAS  PubMed  Google Scholar 

  20. Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics. 2010;11(3):369–90. https://doi.org/10.2217/pgs.10.9.

    Article  CAS  PubMed  Google Scholar 

  21. Hesselink DA, van Gelder T. Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther. 2005;78(4):317–21. https://doi.org/10.1016/j.clpt.2005.06.008.

    Article  CAS  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.

    Article  CAS  PubMed  Google Scholar 

  24. Sohani ZN, Meyre D, de Souza RJ, Joseph PG, Gandhi M, Dennis BB, et al. Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet. 2015;16:50. https://doi.org/10.1186/s12863-015-0211-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics. 2007;8(9):1127–41. https://doi.org/10.2217/14622416.8.9.1127.

    Article  CAS  PubMed  Google Scholar 

  26. Bouamar R, Hesselink DA, van Schaik RH, Weimar W, van der Heiden IP, de Fijter JW, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genom. 2012;22(6):399–407. https://doi.org/10.1097/FPC.0b013e32834a8650.

    Article  CAS  Google Scholar 

  27. Božina N, Lalić Z, Nađ-Škegro S, Borić-Bilušić A, Božina T, Kaštelan Ž, et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients’ and donors’ ABCC2 gene variants, and their interactions. Eur J Clin Pharmacol. 2017;73(9):1129–40. https://doi.org/10.1007/s00228-017-2285-4.

    Article  CAS  PubMed  Google Scholar 

  28. Ciftci HS, Demir E, Karadeniz MS, Tefik T, Nane I, Oguz FS, et al. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant. Ren Fail. 2018;40(1):395–402. https://doi.org/10.1080/0886022x.2018.1489285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ciftci HS, Karadeniz MS, Tefik T, Caliskan Y, Yazıcı H, Demir E, et al. Influence of proton pump inhibitors on mycophenolic acid pharmacokinetics in patients with renal transplantation and the relationship with cytochrome 2C19 gene polymorphism. Transplant Proc. 2017;49(3):490–6. https://doi.org/10.1016/j.transproceed.2017.01.029.

    Article  CAS  PubMed  Google Scholar 

  30. Cilião HL, Camargo-Godoy RBO, Souza MF, Zanuto A, Delfino VDA, Cólus IMS. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil. Mutat Res Genet Toxicol Environ Mutagen. 2018;836:97–102. https://doi.org/10.1016/j.mrgentox.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  31. Geng F, Jiao Z, Dao YJ, Qiu XY, Ding JJ, Shi XJ, et al. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta. 2012;413(7–8):683–90. https://doi.org/10.1016/j.cca.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  32. Grinyó J, Vanrenterghem Y, Nashan B, Vincenti F, Ekberg H, Lindpaintner K, et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int. 2008;21(9):879–91. https://doi.org/10.1111/j.1432-2277.2008.00679.x.

    Article  CAS  PubMed  Google Scholar 

  33. Guo D, Pang LF, Han Y, Yang H, Wang G, Tan ZR, et al. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur J Clin Pharmacol. 2013;69(4):843–9. https://doi.org/10.1007/s00228-012-1409-0.

    Article  PubMed  Google Scholar 

  34. Inoue K, Miura M, Satoh S, Kagaya H, Saito M, Habuchi T, et al. Influence of UGT1A7 and UGT1A9 intronic I399 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Ther Drug Monit. 2007;29(3):299–304. https://doi.org/10.1097/FTD.0b013e3180686146.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson LA, Oetting WS, Basu S, Prausa S, Matas A, Jacobson PA. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol. 2008;64(11):1047–56. https://doi.org/10.1007/s00228-008-0501-y.

    Article  CAS  PubMed  Google Scholar 

  36. Kagaya H, Inoue K, Miura M, Satoh S, Saito M, Tada H, et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63(3):279–88. https://doi.org/10.1007/s00228-006-0248-2.

    Article  CAS  PubMed  Google Scholar 

  37. Kagaya H, Miura M, Saito M, Habuchi T, Satoh S. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol. 2010;107(2):631–6. https://doi.org/10.1111/j.1742-7843.2010.00542.x.

    Article  CAS  PubMed  Google Scholar 

  38. Kagaya H, Miura M, Satoh S, Inoue K, Saito M, Inoue T, et al. No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharm Ther. 2008;33(2):193–201. https://doi.org/10.1111/j.1365-2710.2008.00906.x.

    Article  CAS  PubMed  Google Scholar 

  39. Kagaya H, Niioka T, Saito M, Inoue T, Numakura K, Habuchi T, et al. Effect of hepatic drug transporter polymorphisms on the pharmacokinetics of mycophenolic acid in patients with severe renal dysfunction before renal transplantation. Xenobiotica. 2017;47(10):916–22. https://doi.org/10.1080/00498254.2016.1235742.

    Article  CAS  PubMed  Google Scholar 

  40. Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther. 2005;78(4):351–61. https://doi.org/10.1016/j.clpt.2005.06.007.

    Article  CAS  PubMed  Google Scholar 

  41. Lévesque E, Benoit-Biancamano MO, Delage R, Couture F, Guillemette C. Pharmacokinetics of mycophenolate mofetil and its glucuronide metabolites in healthy volunteers. Pharmacogenomics. 2008;9(7):869–79. https://doi.org/10.2217/14622416.9.7.869.

    Article  CAS  PubMed  Google Scholar 

  42. Lévesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):392–400. https://doi.org/10.1038/sj.clpt.6100073.

    Article  CAS  PubMed  Google Scholar 

  43. Mazidi T, Rouini M-R, Ghahremani M-H, Dashti-Khavidaki S, Lessan-Pezeshki M, Ahmadi FL, et al. Impact of UGT1A9 polymorphism on mycophenolic acid pharmacokinetic parameters in stable renal transplant patients. Iran J Pharm Res. 2013;12(3):547–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miura M, Kagaya H, Satoh S, Inoue K, Saito M, Habuchi T, et al. Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008;30(5):559–64. https://doi.org/10.1097/FTD.0b013e3181838063.

    Article  CAS  PubMed  Google Scholar 

  45. Miura M, Niioka T, Kato S, Kagaya H, Saito M, Habuchi T, et al. Monitoring of mycophenolic acid predose concentrations in the maintenance phase more than one year after renal transplantation. Ther Drug Monit. 2011;33(3):295–302. https://doi.org/10.1097/FTD.0b013e3182197e38.

    Article  CAS  PubMed  Google Scholar 

  46. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63(12):1161–9. https://doi.org/10.1007/s00228-007-0380-7.

    Article  CAS  PubMed  Google Scholar 

  47. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Suzuki T, et al. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation. Ther Drug Monit. 2008;30(1):46–51. https://doi.org/10.1097/FTD.0b013e31816337b7.

    Article  CAS  PubMed  Google Scholar 

  48. Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84. https://doi.org/10.1097/01.tp.0000235533.29300.e7.

    Article  CAS  PubMed  Google Scholar 

  49. Ohmann EL, Burckart GJ, Brooks MM, Chen Y, Pravica V, Girnita DM, et al. Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients. J Heart Lung Transplant. 2010;29(5):509–16. https://doi.org/10.1016/j.healun.2009.11.602.

    Article  PubMed  Google Scholar 

  50. Pazik J, Ołdak M, Podgórska M, Lewandowski Z, Sitarek E, Płoski R, et al. Lymphocyte counts in kidney allograft recipients are associated with IMPDH2 3757T>C gene polymorphism. Transplant Proc. 2011;43(8):2943–5. https://doi.org/10.1016/j.transproceed.2011.08.037.

    Article  CAS  PubMed  Google Scholar 

  51. Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87(1):100–8. https://doi.org/10.1038/clpt.2009.205.

    Article  CAS  PubMed  Google Scholar 

  52. Sánchez-Fructuoso AI, Maestro ML, Calvo N, Viudarreta M, Pérez-Flores I, Veganzone S, et al. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc. 2009;41(6):2313–6. https://doi.org/10.1016/j.transproceed.2009.06.038.

    Article  CAS  PubMed  Google Scholar 

  53. Satoh S, Tada H, Murakami M, Tsuchiya N, Li Z, Numakura K, et al. Circadian pharmacokinetics of mycophenolic acid and implication of genetic polymorphisms for early clinical events in renal transplant recipients. Transplantation. 2006;82(4):486–93. https://doi.org/10.1097/01.tp.0000231874.53240.ba.

    Article  CAS  PubMed  Google Scholar 

  54. Senturk Ciftci H, Tefik T, Karadeniz M, Demir E, Nane I, OĞUz F, et al. Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. İstanbul Tıp Fakültesi Dergisi. 2017;80(3):104–10. https://doi.org/10.18017/iuitfd.363585.

  55. Sombogaard F, Schaik R, Mathot R, Budde K, Werf M, Vulto A, et al. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genom. 2009;19:626–34. https://doi.org/10.1097/FPC.0b013e32832f5f1b.

    Article  CAS  Google Scholar 

  56. van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K, et al. UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther. 2009;86(3):319–27. https://doi.org/10.1038/clpt.2009.83.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Yang JW, Zeevi A, Webber SA, Girnita DM, Selby R, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther. 2008;83(5):711–7. https://doi.org/10.1038/sj.clpt.6100347.

    Article  CAS  PubMed  Google Scholar 

  58. Xie XC, Li J, Wang HY, Li HL, Liu J, Fu Q, et al. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin. 2015;36(5):644–50. https://doi.org/10.1038/aps.2015.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu ZC, Zhou PJ, Wang XH, Françoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 2017;38(11):1566–79. https://doi.org/10.1038/aps.2017.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang WX, Chen B, Jin Z, Yu Z, Wang X, Chen H, et al. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica. 2008;38(11):1422–36. https://doi.org/10.1080/00498250802488585.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao W, Fakhoury M, Deschênes G, Roussey G, Brochard K, Niaudet P, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50(11):1280–91. https://doi.org/10.1177/0091270009357429.

    Article  CAS  PubMed  Google Scholar 

  62. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58. https://doi.org/10.2165/00003088-200746010-00002.

    Article  CAS  PubMed  Google Scholar 

  63. Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos. 2004;32(8):775–8. https://doi.org/10.1124/dmd.32.8.775.

    Article  CAS  PubMed  Google Scholar 

  64. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics. 2004;14(8):501–15. https://doi.org/10.1097/01.fpc.0000114754.08559.27.

    Article  CAS  PubMed  Google Scholar 

  65. Hale MD, Nicholls AJ, Bullingham RE, Hené R, Hoitsma A, Squifflet JP, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64(6):672–83. https://doi.org/10.1016/s0009-9236(98)90058-3.

    Article  CAS  PubMed  Google Scholar 

  66. Michelon H, König J, Durrbach A, Quteineh L, Verstuyft C, Furlan V, et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics. 2010;11(12):1703–13. https://doi.org/10.2217/pgs.10.132.

    Article  CAS  PubMed  Google Scholar 

  67. Woillard JB, Rerolle JP, Picard N, Rousseau A, Drouet M, Munteanu E, et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol. 2010;69(6):675–83. https://doi.org/10.1111/j.1365-2125.2010.03625.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gensburger O, Van Schaik RHN, Picard N, Le Meur Y, Rousseau A, Woillard J-B, et al. Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genom. 2010;20(9):537–43. https://doi.org/10.1097/FPC.0b013e32833d8cf5.

    Article  CAS  Google Scholar 

  69. Winnicki W, Weigel G, Sunder-Plassmann G, Bajari T, Winter B, Herkner H, et al. An inosine 5′-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. Pharmacogenom J. 2010;10(1):70–6. https://doi.org/10.1038/tpj.2009.43.

    Article  CAS  Google Scholar 

  70. Wu TY, Peng Y, Pelleymounter LL, Moon I, Eckloff BW, Wieben ED, et al. Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics. Br J Pharmacol. 2010;161(7):1584–98. https://doi.org/10.1111/j.1476-5381.2010.00987.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248–52. https://doi.org/10.1016/s0140-6736(02)07451-2.

    Article  PubMed  Google Scholar 

  72. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6. https://doi.org/10.1503/cmaj.060410.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bril F, Castro V, Centurion IG, Espinosa J, Keller GA, Gonzalez CD, et al. A systematic approach to assess the burden of drug interactions in adult kidney transplant patients. Curr Drug Saf. 2016;11(2):156–63. https://doi.org/10.2174/157488631102160429003742.

    Article  CAS  PubMed  Google Scholar 

  74. Kuypers DR, Ekberg H, Grinyó J, Nashan B, Vincenti F, Snell P, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48(5):329–41. https://doi.org/10.2165/00003088-200948050-00005.

    Article  CAS  PubMed  Google Scholar 

  75. Finkelstein J, Friedman C, Hripcsak G, Cabrera M. Pharmacogenetic polymorphism as an independent risk factor for frequent hospitalizations in older adults with polypharmacy: a pilot study. Pharmgenom Pers Med. 2016;9:107–16. https://doi.org/10.2147/PGPM.S117014.

    Article  Google Scholar 

  76. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. https://doi.org/10.1038/nature04226.

    Article  CAS  Google Scholar 

  77. Bouamar R, Elens L, Shuker N, van Schaik RH, Weimar W, Hesselink DA, et al. Mycophenolic acid-related anemia and leucopenia in renal transplant recipients are related to genetic polymorphisms in CYP2C8. Transplantation. 2012;93(10):e39–40. author reply e41-2. https://doi.org/10.1097/TP.0b013e3182488bb4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nut Koonrungsesomboon.

Ethics declarations

Funding

This work was supported by a grant from the Faculty of Medicine, Chiang Mai University (No. 047-2564) and the Health Systems Research Institute.

Conflict of interest

Mingkwan Na Takuathung, Wannachai Sakuludomkan, and Nut Koonrungsesomboon have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

The Research Ethics Committee of the Faculty of Medicine, Chiang Mai University granted an exempt research determination to this study protocol (No. EXEMPTION-7046/2020).

Availability of data and material

All data used to support the findings of this study are available from the corresponding author upon reasonable request.

Authors’ contributions

NK and MN contributed to the study conception and design; WS and MN conducted the study and extracted the data under supervision of NK; all authors analyzed the data and interpreted the results; and NK wrote the manuscript, with contributions from all authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na Takuathung, M., Sakuludomkan, W. & Koonrungsesomboon, N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 60, 1291–1302 (2021). https://doi.org/10.1007/s40262-021-01037-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-021-01037-7

Navigation