Skip to main content
Log in

Alternative Sampling Strategies for Cytochrome P450 Phenotyping

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Interindividual variability in the expression and function of drug metabolizing cytochrome P (CYP) 450 enzymes, determined by a combination of genetic, non-genetic and environmental parameters, is a major source of variable drug response. Phenotyping by administration of a selective enzyme substrate, followed by the determination of a specific phenotyping metric, is an appropriate approach to assess the in vivo activity of CYP450 enzymes as it takes into account all influencing factors. A phenotyping protocol should be as simple and convenient as possible. Typically, phenotyping metrics are determined in traditional matrices, such as blood, plasma or urine. Several sampling strategies have been proposed as an alternative for these traditional sampling techniques. In this review, we provide a comprehensive overview of available methods using dried blood spots (DBS), hair, oral fluid, exhaled breath and sweat for in vivo CYP450 phenotyping. We discuss the relation between phenotyping metrics measured in these samples and those in conventional matrices, along with the advantages and limitations of the alternative sampling techniques. Reliable phenotyping procedures for several clinically relevant CYP450 enzymes, including CYP1A2, CYP2C19 and CYP2D6, are currently available for oral fluid, breath or DBS, while additional studies are needed for other CYP450 isoforms, such as CYP3A4. The role of hair analysis for this purpose remains to be established. Being non- or minimally invasive, these sampling strategies provide convenient and patient-friendly alternatives for classical phenotyping procedures, which may contribute to the implementation of CYP450 phenotyping in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14(6):611–50.

    Article  CAS  PubMed  Google Scholar 

  2. Nelson DR. The cytochrome P450 homepage. Hum Genomics. 2009;4(1):59–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

    Article  CAS  PubMed  Google Scholar 

  4. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.

    Article  CAS  PubMed  Google Scholar 

  5. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA. 2001;286(18):2270–9.

    Article  CAS  PubMed  Google Scholar 

  6. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Daly AK. Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol. 2003;17(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21.

    Article  CAS  PubMed  Google Scholar 

  9. The human cytochrome P450 (CYP) allele nomenclature database. Available at: http://www.cypalleles.ki.se. Accessed 14 Apr 2015.

  10. Shah RR, Smith RL. Addressing phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharmacol. 2015;79(2):222–40.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Streetman DS, Bertino JS Jr, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics. 2000;10(3):187–216.

    Article  CAS  PubMed  Google Scholar 

  12. Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther. 2007;81(2):270–83.

    Article  CAS  PubMed  Google Scholar 

  13. Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics. 1996;6(2):159–76.

    Article  CAS  PubMed  Google Scholar 

  14. Kashuba AD, Nafziger AN, Kearns GL, Leeder JS, Shirey CS, Gotschall R, et al. Quantification of intraindividual variability and the influence of menstrual cycle phase on CYP2D6 activity as measured by dextromethorphan phenotyping. Pharmacogenetics. 1998;8(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  15. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  16. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327–36.

    Article  PubMed  Google Scholar 

  17. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Stove CP, Ingels AS, De Kesel PM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol. 2012;42(3):230–43.

    Article  CAS  PubMed  Google Scholar 

  19. Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP. Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis. 2014;6(17):2211–27.

    Article  CAS  PubMed  Google Scholar 

  20. Barfield M, Spooner N, Lad R, Parry S, Fowles S. Application of dried blood spots combined with HPLC-MS/MS for the quantification of acetaminophen in toxicokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Woolf EJ, Agrawal NG, Kothare P, Pucci V, Bateman KP. Merck’s perspective on the implementation of dried blood spot technology in clinical drug development: why, when and how. Bioanalysis. 2013;5(3):341–50.

    Article  CAS  PubMed  Google Scholar 

  22. Suresh PS, Kumar SV, Kumar A, Mullangi R. Development of an LC-MS/MS method for determination of bicalutamide on dried blood spots: application to pharmacokinetic study in mice. Biomed Chromatogr. 2015;29(2):254–60.

    Article  CAS  Google Scholar 

  23. Ingels AS, Hertegonne K, Lambert WE, Stove CP. Feasibility of following up gamma-hydroxybutyric acid concentrations in sodium oxybate (Xyrem®)-treated narcoleptic patients using dried blood spot sampling at home: an exploratory study. CNS Drugs. 2013;27(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bowen CL, Hemberger MD, Kehler JR, Evans CA. Utility of dried blood spot sampling and storage for increased stability of photosensitive compounds. Bioanalysis. 2010;2(11):1823–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bowen CL, Volpatti J, Cades J, Licea-Perez H, Evans CA. Evaluation of glucuronide metabolite stability in dried blood spots. Bioanalysis. 2012;4(23):2823–32.

    Article  CAS  PubMed  Google Scholar 

  26. D’Arienzo CJ, Ji QC, Discenza L, et al. DBS sampling can be used to stabilize prodrugs in drug discovery rodent studies without the addition of esterase inhibitors. Bioanalysis. 2010;2(8):1415–22.

    Article  PubMed  Google Scholar 

  27. Faller A, Richter B, Kluge M, Koenig P, Seitz HK, Skopp G. Stability of phosphatidylethanol species in spiked and authentic whole blood and matching dried blood spots. Int J Legal Med. 2013;127(3):603–10.

    Article  PubMed  Google Scholar 

  28. Parker SP, Cubitt WD. The use of the dried blood spot sample in epidemiological studies. J Clin Pathol. 1999;52(9):633–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Déglon J, Thomas A, Daali Y, Lauer E, Samer C, Desmeules J, et al. Automated system for on-line desorption of dried blood spots applied to LC/MS/MS pharmacokinetic study of flurbiprofen and its metabolite. J Pharm Biomed Anal. 2011;54(2):359–67.

    Article  PubMed  CAS  Google Scholar 

  30. Ooms JA, Knegt L, Koster EH. Exploration of a new concept for automated dried blood spot analysis using flow-through desorption and online SPE-MS/MS. Bioanalysis. 2011;3(20):2311–20.

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira RV, Henion J, Wickremsinhe E. Fully-automated approach for online dried blood spot extraction and bioanalysis by two-dimensional-liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Anal Chem. 2014;86(2):1246–53.

    Article  CAS  PubMed  Google Scholar 

  32. Ashley EA, Stepniewska K, Lindegardh N, Annerberg A, Tarning J, McGready R, et al. Comparison of plasma, venous and capillary blood levels of piperaquine in patients with uncomplicated falciparum malaria. Eur J Clin Pharmacol. 2010;66(7):705–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mohammed BS, Cameron GA, Cameron L, Hawksworth GH, Helms PJ, Mclay JS. Can finger-prick sampling replace venous sampling to determine the pharmacokinetic profile of oral paracetamol? Brit J Clin Pharmacol. 2010;70(1):52–6.

    Article  CAS  Google Scholar 

  34. Rowland M, Emmons GT. Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J. 2010;12(3):290–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5(16):2023–41.

    Article  PubMed  CAS  Google Scholar 

  36. Lad R. Validation of individual quantitative methods for determination of cytochrome P450 probe substrates in human dried blood spots with HPLC-MS/MS. Bioanalysis. 2010;2(11):1849–61.

    Article  CAS  PubMed  Google Scholar 

  37. de Boer T, Wieling J, Meulman E, Reuvers M, Renkema G, den Daas I, et al. Application of dried blood spot sampling combined with LC-MS/MS for genotyping and phenotyping of CYP450 enzymes in healthy volunteers. Biomed Chromatogr. 2011;25(10):1112–23.

    Article  PubMed  CAS  Google Scholar 

  38. Daali Y, Samer C, Déglon J, Thomas A, Chabert J, Rebsamen M, et al. Oral flurbiprofen metabolic ratio assessment using a single-point dried blood spot. Clin Pharmacol Ther. 2012;91(3):489–96.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A. Cotinine and trans 3′-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. J Expo Sci Environ Epidemiol. 2013;23(5):513–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. De Kesel PM, Lambert WE, Stove CP. CYP1A2 phenotyping in dried blood spots and microvolumes of whole blood and plasma. Bioanalysis. 2014;6(22):3011–24.

    Article  PubMed  CAS  Google Scholar 

  41. De Kesel PM, Lambert WE, Stove CP. Why dried blood spots are an ideal tool for CYP1A2 phenotyping. Clin Pharmacokinet. 2014;53(8):763–71.

    Article  PubMed  CAS  Google Scholar 

  42. Donzelli M, Derungs A, Serratore MG, Noppen C, Nezic L, Krahenbuhl S, et al. The Basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin Pharmacokinet. 2014;53(3):271–82.

    Article  CAS  PubMed  Google Scholar 

  43. Bosilkovska M, Déglon J, Samer C, Walder B, Desmeules J, Staub C, et al. Simultaneous LC-MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and their metabolites in DBS and plasma. Bioanalysis. 2014;6(2):151–64.

    Article  CAS  PubMed  Google Scholar 

  44. Bosilkovska M, Samer CF, Déglon J, Rebsamen M, Staub C, Dayer P, et al. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther. 2014;96(3):349–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta. 2006;370(1–2):17–49.

    Article  CAS  PubMed  Google Scholar 

  46. Barbosa J, Faria J, Carvalho F, Pedro M, Queriós O, Moreira R, et al. Hair as an alternative matrix in bioanalysis. Bioanalysis. 2013;5(8):895–914.

    Article  CAS  PubMed  Google Scholar 

  47. LeBeau M, Montgomery MA, Brewer JD. The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci Int. 2011;210(1–3):110–6.

    Article  PubMed  Google Scholar 

  48. Cooper GA, Kronstrand R, Kintz P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int. 2012;218(1–3):20–4.

    Article  CAS  PubMed  Google Scholar 

  49. Agius R, Kintz P. Guidelines for European workplace drug and alcohol testing in hair. Drug Test Anal. 2010;2(8):367–76.

    Article  CAS  PubMed  Google Scholar 

  50. Madry MM, Rust KY, Guglielmello, Baumgartner MR, Kraemer T. Metabolite to parent drug concentration ratios in hair for the differentiation of tramadol intake from external contamination and passive exposure. Forensic Sci Int. 2012;223(1–3):330–4.

    Article  CAS  PubMed  Google Scholar 

  51. Poetzsch M, Baumgartner MR, Steuer AE, Kraemer T. Segmental hair analysis for differentiation of tilidine intake from external contamination using LC-ESI-MS/MS and MALDI-MS/MS imaging. Drug Test Anal. 2015;7(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  52. Jurado C, Kintz P, Menéndez M, Repetto M. Influence of the cosmetic treatment of hair on drug testing. Int J Legal Med. 1997;110(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  53. Mizuno A, Uematsu T, Gotoh S, Katoh E, Nakashima M. The measurement of caffeine concentration in scalp hair as an indicator of liver function. J Pharm Pharmacol. 1996;48(6):660–4.

    Article  CAS  PubMed  Google Scholar 

  54. Thieme D, Rolf B, Sachs H, Schmid D. Correlation of inter-individual variations of amitriptyline metabolism examined in hairs with CYP2C19 and CYP2D6 polymorphisms. Int J Legal Med. 2008;122(2):149–55.

    Article  PubMed  Google Scholar 

  55. De Kesel PM, Lambert WE, Stove CP. Paraxanthine/caffeine concentration ratios in hair: an alternative for plasma-based phenotyping of cytochrome P450 1A2? Clin Pharmacokinet. 2015;54(7):771–81.

    Article  PubMed  CAS  Google Scholar 

  56. Klein J, Blanchette P, Koren G. Assessing nicotine metabolism in pregnancy: a novel approach using hair analysis. Forensic Sci Int. 2004;145(2–3):191–4.

    Article  CAS  PubMed  Google Scholar 

  57. Dempsey D, Jacob P 3rd, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.

    Article  CAS  PubMed  Google Scholar 

  58. Koren G, Blanchette P, Lubetzky A, Kramer M. Hair nicotine:cotinine metabolic ratio in pregnant women: a new method to study metabolism in late pregnancy. Ther Drug Monit. 2008;30(2):246–8.

    Article  CAS  PubMed  Google Scholar 

  59. O’Brien L, Baumer C, Thieme D, Sachs H, Koren G. Changes in antidepressant metabolism in pregnancy evidenced by metabolic ratios in hair: a novel approach. Forensic Sci Int. 2010;196(1–3):93–6.

    Article  PubMed  CAS  Google Scholar 

  60. Heikkinen T, Ekblad U, Kero P, Ekblad S, Laine K. Citalopram in pregnancy and lactation. Clin Pharmacol Ther. 2002;72(2):184–91.

    Article  PubMed  CAS  Google Scholar 

  61. Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.

    Article  CAS  PubMed  Google Scholar 

  62. Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44(10):989–1008.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong H. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol. 2010;6(6):689–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Himes SK, Goodwin RS, Rock CM, Jones HE, Johnson RE, Wilkins DG, et al. Methadone and metabolites in hair of methadone-assisted pregnant women and their infants. Ther Drug Monit. 2012;34(3):337–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Rostami-Hodjegan A, Wolff K, Hay AW, Raistrick D, Calvert R, Tucker GT. Population pharmacokinetics of methadone in opiate users: characterization of time-dependent changes. Br J Clin Pharmacol. 1999;48(1):43–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Henderson GL. Mechanisms of drug incorporation into hair. Forensic Sci Int. 1993;63(1–3):19–29.

    Article  CAS  PubMed  Google Scholar 

  67. Langman LJ. The use of oral fluid for therapeutic drug management: clinical and forensic toxicology. Ann N Y Acad Sci. 2007;1098:145–66.

    Article  CAS  PubMed  Google Scholar 

  68. The integrated project DRUID (Driving under the Influence of Drugs, Alcohol and Medicines). Available at: http://www.druid-project.eu/Druid/EN/Home/home_node.html. Accessed 14 Apr 2015.

  69. Tsanaclis LM, Wicks JF, Chasin AA. Workplace drug testing, different matrices different objectives. Drug Test Anal. 2012;4(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  70. Choo RE, Huestis MA. Oral fluid as a diagnostic tool. Clin Chem Lab Med. 2004;42(11):1273–87.

    Article  CAS  PubMed  Google Scholar 

  71. Mullangi R, Agrawal S, Srinivas NR. Measurement of xenobiotics in saliva: is saliva an attractive alternative matrix? Case studies and analytical perspectives. Biomed Chromatogr. 2009;23(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  72. Wille SM, Baumgartner MR, Fazio VD, Samyn N, Kraemer T. Trends in drug testing in oral fluid and hair as alternative matrices. Bioanalysis. 2014;6(17):2193–209.

    Article  CAS  PubMed  Google Scholar 

  73. Zylber-Katz E, Granit L, Levy M. Relationship between caffeine concentrations in plasma and saliva. Clin Pharmacol Ther. 1984;36(1):133–7.

    Article  CAS  PubMed  Google Scholar 

  74. Jost G, Wahlländer A, von Mandach U, Preisig R. Overnight salivary caffeine clearance: a liver function test suitable for routine use. Hepatology. 1987;7(2):338–44.

    Article  CAS  PubMed  Google Scholar 

  75. Setchell KD, Welsh MB, Klooster MJ, Balistreri WF, Lim CK. Rapid high-performance liquid chromatography assay for salivary and serum caffeine following an oral load. An indicator of liver function. J Chromatogr. 1987;385:267–74.

    Article  CAS  PubMed  Google Scholar 

  76. Bianchetti MG, Kraemer R, Passweg J, Jost J, Preisig R. Use of salivary levels to predict clearance of caffeine in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr. 1988;7(5):688–93.

    Article  CAS  PubMed  Google Scholar 

  77. Wahlländer A, Mohr S, Paumgartner G. Assessment of hepatic function. Comparison of caffeine clearance in serum and saliva during the day and at night. J Hepatol. 1990;10(2):129–37.

    Article  PubMed  Google Scholar 

  78. Lewis FW, Rector WG Jr. Caffeine clearance in cirrhosis. The value of simplified determinations of liver metabolic capacity. J Hepatol. 1992;14(2–3):157–62.

    Article  CAS  PubMed  Google Scholar 

  79. Fuhr U, Klittich K, Staib AH. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol. 1993;35(4):431–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics. 1994;4(3):109–16.

    Article  CAS  PubMed  Google Scholar 

  81. Rostami-Hodjegan A, Nurminen S, Jackson PR, Tucker GT. Caffeine urinary metabolite ratios as markers of enzyme activity: a theoretical assessment. Pharmacogenetics. 1996;6(2):121–49.

    Article  CAS  PubMed  Google Scholar 

  82. Spigset O, Hägg S, Söderström E, Dahlqvist R. The paraxanthine:caffeine ratio in serum or in saliva as a measure of CYP1A2 activity: when should the sample be obtained? Pharmacogenetics. 1999;9(3):409–12.

    Article  CAS  PubMed  Google Scholar 

  83. Akinyinka OO, Sowunmi A, Honeywell R, Renwick AG. The effects of acute falciparum malaria on the disposition of caffeine and the comparison of saliva and plasma-derived pharmacokinetic parameters in adult Nigerians. Eur J Clin Pharmacol. 2000;56(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  84. Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl ML, Benitez J, et al. Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit. 2000;22(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  85. Shirley KL, Hon YY, Penzak SR, Lam YW, Spratlin V, Jann MW. Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology. 2003;28(5):961–6.

    CAS  PubMed  Google Scholar 

  86. Kukongviriyapan V, Senggunprai L, Prawan A, Gaysornsiri D, Kukongviriyapan U, Aiemsa-Ard J. Salivary caffeine metabolic ratio in alcohol-dependent subjects. Eur J Clin Pharmacol. 2004;60(2):103–7.

    Article  CAS  PubMed  Google Scholar 

  87. Perera V, Gross AS, Xu H, McLachlan AJ. Pharmacokinetics of caffeine in plasma and saliva, and the influence of caffeine abstinence on CYP1A2 metrics. J Pharm Pharmacol. 2011;63(9):1161–8.

    Article  CAS  PubMed  Google Scholar 

  88. El-Yazigi A, Shabib S, Al-Rawithi S, Yusuf A, Legayada ES, Al-Humidan A. Salivary clearance and urinary metabolic pattern of caffeine in healthy children and in pediatric patients with hepatocellular diseases. J Clin Pharmacol. 1999;39(4):366–72.

    Article  CAS  PubMed  Google Scholar 

  89. Tantcheva-Poór I, Zaigler M, Rietbrock S, Fuhr U. Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test. Pharmacogenetics. 1999;9(2):131–44.

    PubMed  Google Scholar 

  90. Forsyth JT, Grünewald RA, Rostami-Hodjegan A, Lennard MS, Sagar HJ, Tucker GT. Parkinson’s disease and CYP1A2 activity. Br J Clin Pharmacol. 2000;50(4):303–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Zaigler M, Rietbrock S, Szymanski J, Dericks-Tan JS, Staib AH, Fuhr U. Variation of CYP1A2-dependent caffeine metabolism during menstrual cycle in healthy women. Int J Clin Pharmacol Ther. 2000;38(5):235–44.

    Article  CAS  PubMed  Google Scholar 

  92. Hägg S, Spigset O, Lakso HA, Dahlqvist R. Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol. 2001;57(6–7):493–7.

    PubMed  Google Scholar 

  93. Murray S, Lake BG, Gray S, Edwards AJ, Springall C, Bowey EA, et al. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001;22(9):1413–20.

    Article  CAS  PubMed  Google Scholar 

  94. Tantcheva-Poór I, Servera-Llaneras M, Scharffetter-Kochanek K, Fuhr U. Liver cytochrome P450 CYP1A2 is markedly inhibited by systemic but not by bath PUVA in dermatological patients. Br J Dermatol. 2001;144(6):1127–32.

    Article  PubMed  Google Scholar 

  95. Bozikas VP, Papakosta M, Niopas I, Karavatos A, Mirtsou-Fidani V. Smoking impact on CYP1A2 activity in a group of patients with schizophrenia. Eur Neuropsychopharmacol. 2004;14(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  96. Shiran MR, Lennard MS, Iqbal MZ, Lagundoye O, Seivewright N, Tucker GT, et al. Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol. 2009;67(1):29–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Perera V, Gross AS, McLachlan AJ. Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry. Clin Pharmacol Ther. 2012;92(4):511–9.

    CAS  PubMed  Google Scholar 

  98. Perera V, Gross AS, McLachlan AJ. Diurnal variation in CYP1A2 enzyme activity in South Asians and Europeans. J Pharm Pharmacol. 2013;65(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  99. Hou ZY, Pickle LW, Meyer PS, Woosley RL. Salivary analysis for determination of dextromethorphan metabolic phenotype. Clin Pharmacol Ther. 1991;49(4):410–9.

    Article  CAS  PubMed  Google Scholar 

  100. Hou ZY, Chen CP, Yang WC, Lai MD, Buchert ET, Chung HM, et al. Determination of dextromethorphan metabolic phenotype by salivary analysis with a reference to genotype in Chinese patients receiving renal hemodialysis. Clin Pharmacol Ther. 1996;59(4):411–7.

    Article  CAS  PubMed  Google Scholar 

  101. Hu OY, Tang HS, Lane HY, Chang WH, Hu TM. Novel single-point plasma or saliva dextromethorphan method for determining CYP2D6 activity. J Pharmacol Exp Ther. 1998;285(3):955–60.

    CAS  PubMed  Google Scholar 

  102. Lutz U, Völkel W, Lutz RW, Lutz WK. LC-MS/MS analysis of dextromethorphan metabolism in human saliva and urine to determine CYP2D6 phenotype and individual variability in N-demethylation and glucuronidation. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;813(1–2):217–25.

    Article  CAS  PubMed  Google Scholar 

  103. Kuo BP, Hu OY, Hsiong CH, Pao LH, Chen TS, Hung CF. Single-point plasma or urine dextromethorphan method for determining CYP3A activity. Biopharm Drug Dispos. 2003;24(9):367–73.

    Article  CAS  PubMed  Google Scholar 

  104. Link B, Haschke M, Grignaschi N, Bodmer M, Aschmann YZ, Wenk M, et al. Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol. 2008;66(4):473–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Kim I, Wtsadik A, Choo RE, Jones HE, Huestis MA. Usefulness of salivary trans-3′-hydroxycotinine concentration and trans-3′-hydroxycotinine/cotinine ratio as biomarkers of cigarette smoke in pregnant women. J Anal Toxicol. 2005;29(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  106. West O, Hajek P, McRobbie H. Systematic review of the relationship between the 3-hydroxycotinine/cotinine ratio and cigarette dependence. Psychopharmacology. 2011;218(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  107. Schnoll RA, Leone FT. Biomarkers to optimize the treatment of nicotine dependence. Biomark Med. 2011;5(6):745–61.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Rubinstein ML, Shiffman S, Moscicki AB, Rait MA, Sen S, Benowitz NL. Nicotine metabolism and addiction among adolescent smokers. Addiction. 2013;108(2):406–12.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Bough KJ, Lerman C, Rose JE, McClernon FJ, Kenny PJ, Tyndale RF, et al. Biomarkers for smoking cessation. Clin Pharmacol Ther. 2013;93(6):526–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Carpenter MJ, Jardin BF, Burris JL, Mathew AR, Schnoll RA, Rigotti NA, et al. Clinical strategies to enhance the efficacy of nicotine replacement therapy for smoking cessation: a review of the literature. Drugs. 2013;73(5):407–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  112. St. Helen G, Novalen M, Heitjan DF, Dempsey D, Jacob P 3rd, Aziziyeh A, et al. Reproducibility of the nicotine metabolite ratio in cigarette smokers. Cancer Epidemiol Biomarkers Prev. 2012;21(7):1105–14.

  113. Lea RA, Dickson S, Benowitz NL. Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate. J Anal Toxicol. 2006;30(6):386–9.

    Article  CAS  PubMed  Google Scholar 

  114. Armuzzi A, Candelli M, Zocco MA, Andreoli A, De Lorenzo A, Nista EC, et al. Review article: breath testing for human liver function assessment. Aliment Pharmacol Ther. 2002;16(12):1977–96.

    Article  CAS  PubMed  Google Scholar 

  115. Nista EC, Fini L, Armuzzi A, Candelli M, Zocco MA, Cazzato IA, et al. 13C-breath tests in the study of microsomal liver function. Eur Rev Med Pharmacol Sci. 2004;8(1):33–46.

    CAS  PubMed  Google Scholar 

  116. Braden B, Lembcke B, Kuker W, Caspary WF. 13C-breath tests: current state of the art and future directions. Dig Liver Dis. 2007;39(9):795–805.

    Article  CAS  PubMed  Google Scholar 

  117. Modak AS. 13C breath tests in personalized medicine: fiction or reality? Expert Rev Mol Diagn. 2009;9(8):805–15.

    Article  PubMed  Google Scholar 

  118. Modak AS. Regulatory issues on breath tests and updates of recent advances on [13C]-breath tests. J Breath Res. 2013;7(3):037103.

    Article  PubMed  CAS  Google Scholar 

  119. Opdam FL, Modak AS, Gelderblom H, Guchelaar HJ. Breath tests to phenotype drug disposition in oncology. Clin Pharmacokinet. 2013;52(11):919–26.

    Article  CAS  PubMed  Google Scholar 

  120. Afolabi P, Wright M, Wootton SA, Jackson AA. Clinical utility of 13C-liver-function breath tests for assessment of hepatic function. Dig Dis Sci. 2013;58(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  121. Pijls KE, de Vries H, Nikkessen S, Bast A, Wodzig WK, Koek GH. Critical appraisal of 13C breath tests for microsomal liver function: aminopyrine revisited. Liver Int. 2014;34(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  122. Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M. Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999;29(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  123. Kodaira C, Uchida S, Yamade M, Nishino M, Ikuma M, Namiki N, et al. Influence of different proton pump inhibitors on activity of cytochrome P450 assessed by [13C]-aminopyrine breath test. J Clin Pharmacol. 2012;52(3):432–9.

    Article  CAS  PubMed  Google Scholar 

  124. Desta Z, Modak A, Nguyen PD, Lemler SM, Kurogi Y, Li L, et al. Rapid identification of the hepatic cytochrome P450 2C19 activity using a novel and noninvasive [13C]pantoprazole breath test. J Pharmacol Exp Ther. 2009;329(1):297–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Furuta T, Kodaira C, Nishino M, Yamade M, Sugimoto M, Ikuma M, et al. [13C]-pantoprazole breath test to predict CYP2C19 phenotype and efficacy of a proton pump inhibitor, lansoprazole. Aliment Pharmacol Ther. 2009;30(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  126. Furuta T, Iwaki T, Umemura K. [13C]pantoprazole breath test as a predictor of the anti-platelet function of clopidogrel. Eur J Clin Pharmacol. 2010;66(5):457–63.

    Article  CAS  PubMed  Google Scholar 

  127. Thacker DL, Modak A, Nguyen PD, Flockhart DA, Desta Z. Stereoselective pharmacokinetics of stable isotope (+/−)-[13C]-pantoprazole: Implications for a rapid screening phenotype test of CYP2C19 activity. Chirality. 2011;23(10):904–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Tazaki J, Jinnai T, Tada T, Kato Y, Makiyama T, Ikeda T, et al. Prediction of clopidogrel low responders by a rapid CYP2C19 activity test. J Atheroscler Thromb. 2012;19(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  129. Thacker DL, Modak A, Flockhart DA, Desta Z. Is (+)-[13C]-pantoprazole better than (±)-[13C]-pantoprazole for the breath test to evaluate CYP2C19 enzyme activity? J Breath Res. 2013;7(1):016001.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Leeder JS, Pearce RE, Gaedigk A, Modak A, Rosen DI. Evaluation of a [13C]-dextromethorphan breath test to assess CYP2D6 phenotype. J Clin Pharmacol. 2008;48(9):1041–51.

    Article  CAS  PubMed  Google Scholar 

  131. Opdam FL, Dezentje VO, den Hartigh J, Modak AS, Vree R, Batman E, et al. The use of the 13C-dextromethorphan breath test for phenotyping CYP2D6 in breast cancer patients using tamoxifen: association with CYP2D6 genotype and serum endoxifen levels. Cancer Chemother Pharmacol. 2013;71(3):593–601.

    Article  CAS  PubMed  Google Scholar 

  132. Park GJ, Katelaris PH, Jones DB, Seow F, Le Couteur DG, Ngu MC. Validity of the 13C-caffeine breath test as a noninvasive, quantitative test of liver function. Hepatology. 2003;38(5):1227–36.

    Article  CAS  PubMed  Google Scholar 

  133. Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DD, Josephs H. The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin Pharmacol Ther. 1982;32(2):261–9.

    Article  PubMed  Google Scholar 

  134. Lambert GH, Schoeller DA, Humphrey HE, Kotake AN, Lietz H, Campbell M, et al. The caffeine breath test and caffeine urinary metabolite ratios in the Michigan cohort exposed to polybrominated biphenyls: a preliminary study. Environ Health Perspect. 1990;89:175–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Rost KL, Brösicke H, Brockmöller J, Scheffler M, Helge H, Roots I. Increase of cytochrome P450IA2 activity by omeprazole: evidence by the 13C-[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther. 1992;52(2):170–80.

    Article  CAS  PubMed  Google Scholar 

  136. Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther. 1994;55(4):402–11.

    Article  CAS  PubMed  Google Scholar 

  137. Lown KS, Thummel KE, Benedict PE, Shen DD, Turgeon DK, Berent S, et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther. 1995;57(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  138. Kinirons MT, O’Shea D, Kim RB, Groopman JD, Thummel KE, Wood AJ, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther. 1999;66(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  139. Masica AL, Mayo G, Wilkinson GR. In vivo comparisons of constitutive cytochrome P450 3A activity assessed by alprazolam, triazolam, and midazolam. Clin Pharmacol Ther. 2004;76(4):341–9.

    Article  CAS  PubMed  Google Scholar 

  140. Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008;84(6):704–9.

    Article  CAS  PubMed  Google Scholar 

  141. Kurnik D, Wood AJ, Wilkinson GR. The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin Pharmacol Ther. 2006;80(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  142. Mena-Bravo A, Luque de Castro MD. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139–47.

    Article  CAS  PubMed  Google Scholar 

  143. Skopp G, Pötsch L. Perspiration versus saliva: basic aspects concerning their use in roadside drug testing. Int J Legal Med. 1999;112(4):213–21.

    Article  CAS  PubMed  Google Scholar 

  144. Cone EJ. Legal, workplace, and treatment drug testing with alternate biological matrices on a global scale. Forensic Sci Int. 2001;121(1–2):7–15.

    Article  CAS  PubMed  Google Scholar 

  145. De Giovanni N, Fucci N. The current status of sweat testing for drugs of abuse: a review. Curr Med Chem. 2013;20(4):545–61.

    PubMed  Google Scholar 

  146. Delahunty T, Schoendorfer D. Caffeine demethylation monitoring using a transdermal sweat patch. J Anal Toxicol. 1998;22(7):596–600.

    Article  CAS  PubMed  Google Scholar 

  147. Kuwayama K, Tsujikawa K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H. Time-course measurements of caffeine and its metabolites extracted from fingertips after coffee intake: a preliminary study for the detection of drugs from fingerprints. Anal Bioanal Chem. 2013;405(12):3945–52.

    Article  CAS  PubMed  Google Scholar 

  148. Grosso LM, Triche EW, Belanger K, Benowitz NL, Holford TR, Bracken MB. Caffeine metabolites in umbilical cord blood, cytochrome P-450 1A2 activity, and intrauterine growth restriction. Am J Epidemiol. 2006;163(11):1035–41.

    Article  PubMed  Google Scholar 

  149. Hohmann N, Haefeli WE, Mikus G. Use of microdose phenotyping to individualise dosing of patients. Clin Pharmacokinet. doi:10.1007/s40262-015-0278-y (Epub 30 Apr 2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe P. Stove.

Ethics declarations

Pieter M. M. De Kesel, Willy E. Lambert and Christophe P. Stove have no conflicts of interest to declare. This study was financed by the Laboratory of Toxicology, Ghent University, Belgium. Pieter M. M. De Kesel, Willy E. Lambert, and Christophe P. Stove received no additional funding directly related to the content of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Kesel, P.M.M., Lambert, W.E. & Stove, C.P. Alternative Sampling Strategies for Cytochrome P450 Phenotyping. Clin Pharmacokinet 55, 169–184 (2016). https://doi.org/10.1007/s40262-015-0306-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0306-y

Keywords

Navigation