Skip to main content
Log in

Viral Venereal Diseases of the Skin

  • Therapy in Practice
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Viral venereal diseases remain difficult to treat. Human papilloma virus (HPV) and herpes simplex virus (HSV) are two common viral venereal diseases. HPV infections are characterized by anogenital warts and less commonly by premalignant or malignant lesions. HSV infections classically present as grouped vesicles on an erythematous base with associated burning or pain; however, immunosuppressed patients may have atypical presentations with nodular or ulcerative lesions. This review discusses the epidemiology, diagnosis, and management of anogenital HPV and HSV infections with an emphasis on treatment modalities for the practicing dermatologist. Diagnosis of these diseases typically relies on clinical assessment, although multiple diagnostic techniques can be utilized and are recommended when diagnosis is uncertain or evaluating an individual with increased risk of malignancy. Management of HPV and HSV infections involves appropriate counseling, screening, and multiple treatment techniques. Particularly for HPV infections, a practitioner may need to use a combination of techniques to achieve the desired outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen Z, DeSalle R, Schiffman M, Herrero R, Wood CE, Ruiz JC, et al. Niche adaptation and viral transmission of human papillomaviruses from archaic hominins to modern humans. PLoS Pathog. 2018;14:e1007352.

    PubMed  PubMed Central  Google Scholar 

  2. Wertheim JO, Smith MD, Smith DM, Scheffler K, Kosakovsky Pond SL. Evolutionary origins of human herpes simplex viruses 1 and 2. Mol Biol Evol. 2014;31:2356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowden R, Sakaoka H, Ward R, Donnelly P. Patterns of Eurasian HSV-1 molecular diversity and inferences of human migrations. Infect Genet Evol. 2006;6:63–74.

    CAS  PubMed  Google Scholar 

  4. CDC HPV Case Definition. https://www.cdc.gov/std/stats18/appendix-c.htm. Accessed 1 Feb 2021.

  5. Bornstein J, Bogliatto F, Haefner HK, Stockdale CK, Preti M, Bohl TG, et al. The 2015 International Society for the Study of Vulvovaginal Disease (ISSVD) Terminology of vulvar squamous intraepithelial lesions. Obstet Gynecol. 2016;127:264–8.

    PubMed  Google Scholar 

  6. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: Background and consensus recommendations from the college of American pathologists and the American society for colposcopy and cervical pathology. Int J Gynecol Pathol. 2013;32:76–115.

    PubMed  Google Scholar 

  7. Gross G. Bowenoid Papulosis. Arch Dermatol. 1985;121:858.

    CAS  PubMed  Google Scholar 

  8. Wilkinson EJ, Cox JT, Selim MA, O’Connor DM. Evolution of terminology for human-papillomavirus-infection-related vulvar squamous intraepithelial lesions. J Low Genit Tract Dis. 2015;19:81–7.

    PubMed  Google Scholar 

  9. Wieland U, Jurk S, Weissenborn S, Pfister H, Krieg T, Ritzkowsky A. Erythroplasia of Queyrat: coinfection with cutaneous carcinogenic human papillomavirus type 8 and genital papillomaviruses in a carcinoma in situ. J Invest Dermatol. 2000;115:396–401.

    CAS  PubMed  Google Scholar 

  10. Grassegger A, Höpfl R, Hussl H, Wicke K, Fritsch P. Buschke—Loewenstein tumour infiltrating pelvic organs. Br J Dermatol. 1994;130:221–5.

    CAS  PubMed  Google Scholar 

  11. Vidal CI, Armbrect EA, Andea AA, Bohlke AK, Comfere NI, Hughes SR, et al. Appropriate use criteria in dermatopathology: initial recommendations from the American Society of Dermatopathology. J Am Acad Dermatol. 2019;80:189-207.e11.

    PubMed  Google Scholar 

  12. Szentirmay Z, Pólus K, Tamás L, Szentkuti G, Kurcsics J, Csernák E, et al. Human papillomavirus in head and neck cancer: Molecular biology and clinicopathological correlations. Cancer Metast Rev. 2005;24:19–34.

    CAS  Google Scholar 

  13. Mui U, Haley C, Tyring S. Viral oncology: molecular biology and pathogenesis. J Clin Med. 2017;6:111.

    PubMed Central  Google Scholar 

  14. Stubenrauch F, Laimins LA. Human papillomavirus life cycle: Active and latent phases. Semin Cancer Biol. 1999;9:379–86.

    CAS  PubMed  Google Scholar 

  15. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F. Carcinogenicity of human papillomaviruses. Lancet Oncol. 2005;6:204.

    PubMed  Google Scholar 

  16. Serup-Hansen E, Linnemann D, Skovrider-Ruminski W, Hgødall E, Geertsen PF, Havsteen H. Human papillomavirus genotyping and p16 expression as prognostic factors for patients with American Joint Committee on Cancer stages I to III carcinoma of the anal canal. J Clin Oncol. 2014;32:1812–7.

    PubMed  Google Scholar 

  17. Halec G, Alemany L, Quiros B, Clavero O, Höfler D, Alejo M, et al. Biological relevance of human papillomaviruses in vulvar cancer. Mod Pathol. 2017;30:549–62.

    CAS  PubMed  Google Scholar 

  18. Aynaud O, Ionesco M, Barrasso R. Penile intraepithelial neoplasia. Specific clinical features correlate with histologic and virologic findings. Cancer. 1994;74:1762–7.

    CAS  PubMed  Google Scholar 

  19. Chan KW, Lam KY, Chan ACL, Lau P, Srivastava G. Prevalence of human papillomavirus types 16 and 18 in penile carcinoma: A study of 41 cases using PCR. J Clin Pathol. 1994;47:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Micali G, Nasca MR, Innocenzi D, Schwartz RA. Penile cancer. J Am Acad Dermatol. 2006;54:369–91.

    PubMed  Google Scholar 

  21. Scott M, Nakagawa M, Moscicki AB. Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol. 2001;8:209–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SC, Glynn RJ, Giovannucci E, Hernández-Díaz S, Liu J, Feldman S, et al. Risk of high-grade cervical dysplasia and cervical cancer in women with systemic inflammatory diseases: a population-based cohort study. Ann Rheum Dis. 2015;74:1360–7.

    PubMed  Google Scholar 

  23. Wadström H, Frisell T, Sparén P, Askling J. Do RA or TNF inhibitors increase the risk of cervical neoplasia or of recurrence of previous neoplasia? A nationwide study from Sweden. Ann Rheum Dis. 2016;75:1272–8.

    PubMed  Google Scholar 

  24. Matorras R, Ariceta JM, Rementeria A, Corral J, de Terán GG, Diez J, et al. Human immunodeficiency virus-induced immunosuppression: a risk factor for human papillomavirus infection. Am J Obstet Gynecol. 1991;164:42–4.

    CAS  PubMed  Google Scholar 

  25. Halpert RG, Fruchter RG, Sedlis A, Butt K, Boyce JC, Sillman FH. Human papillomavirus and lower genital neoplasia in renal transplant patients. Obstet Gynecol. 1986;68:251–8.

    CAS  PubMed  Google Scholar 

  26. Wadström H, Arkema EV, Sjöwall C, Askling J, Simard JF. Cervical neoplasia in systemic lupus erythematosus: a nationwide study. Rheumatol (United Kingdom). 2017;56:613–9.

    Google Scholar 

  27. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92:1500–10.

    CAS  PubMed  Google Scholar 

  28. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32:7.

    Google Scholar 

  29. Oriel JD. Natural history of genital warts. Sex Transm Infect. 1971;47:1–13.

    CAS  Google Scholar 

  30. Arima Y, Winer RL, Feng Q, Hughes JP, Lee SK, Stern ME, et al. Development of genital warts after incident detection of human papillomavirus infection in young men. J Infect Dis. 2010;202:1181–4.

    PubMed  Google Scholar 

  31. Winer RL, Kiviat NB, Hughes JP, Adam DE, Lee SK, Kuypers JM, et al. Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis. 2005;191:731–8.

    PubMed  Google Scholar 

  32. Burchell AN, Winer RL, de Sanjosé S, Franco EL. Chapter 6: epidemiology and transmission dynamics of genital HPV infection. Vaccine. 2006;24:52–61.

    Google Scholar 

  33. Winer RL, Hughes JP, Feng Q, O’Reilly S, Kiviat NB, Holmes KK, et al. Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med. 2006;354:2645–54.

    CAS  PubMed  Google Scholar 

  34. Baldwin SB, Wallace DR, Papenfuss MR, Abrahamsen M, Vaught LC, Giuliano AR. Condom use and other factors affecting penile human papillomavirus detection in men attending a sexually transmitted disease clinic. Sex Transm Dis. 2004;31:601–7.

    PubMed  Google Scholar 

  35. Chesson HW, Dunne EF, Hariri S, Markowitz LE. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis. 2014;41:660–4.

    PubMed  PubMed Central  Google Scholar 

  36. Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;195:1582–9.

    PubMed  Google Scholar 

  37. Flagg EW, Torrone EA. Declines in anogenital warts among age groups most likely to be impacted by human papillomavirus vaccination, United States, 2006–2014. Am J Public Health. 2018;108:112–9.

    PubMed  PubMed Central  Google Scholar 

  38. Insinga RP, Dasbach EJ, Myers ER. The health and economic burden of genital warts in a set of private health plans in the United States. Clin Infect Dis. 2003;36:1397–403.

    PubMed  Google Scholar 

  39. Insinga RP, Dasbach EJ, Elbasha EH. Assessing the annual economic burden of preventing and treating anogenital human papillomavirus-related disease in the US: analytic framework and review of the literature. Pharmacoeconomics. 2005;23:1107–22.

    PubMed  Google Scholar 

  40. Insinga RP, Glass AG, Rush BB. Diagnoses and outcomes in cervical cancer screening: a population-based study. Am J Obstet Gynecol. 2004;191:105–13.

    PubMed  Google Scholar 

  41. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Heal. 2020;8:e191-203.

    Google Scholar 

  42. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    PubMed  Google Scholar 

  43. De Vuyst H, Lillo F, Broutet N, Smith JS. HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev. 2008;17:545–54.

    PubMed  Google Scholar 

  44. Gormley RH, Kovarik CL. Human papillomavirus-related genital disease in the immunocompromised host: Part I. J Am Acad Dermatol Elsevier. 2012;66:883.e1-883.e17.

    Google Scholar 

  45. Dong H, Shu D, Campbell TM, Frühauf J, Soyer P, Hofmann-Wellenhof R. Dermatoscopy of genital warts. J Am Acad Dermatol. 2011;64:859–64.

    PubMed  Google Scholar 

  46. Leonardi CL, Zhu WY, Kinsey WH, Penneys NS. Seborrheic keratoses from the genital region may contain human papillomavirus DNA. Arch Dermatol. 1991;127:1203–6.

    CAS  PubMed  Google Scholar 

  47. Li J, Ackerman AB. “Seborrheic keratoses” that contain human papillomavirus are condylomata acuminata. Am J Dermatopathol. 1994;16:398–408.

    CAS  PubMed  Google Scholar 

  48. Reutter JC, Geisinger KR, Laudadio J. Vulvar seborrheic keratosis: Is there a relationship to human papillomavirus? J Low Genit Tract Dis. 2014;18:190–4.

    PubMed  Google Scholar 

  49. Cho CY, Lo YC, Hung MC, Lai CC, Chen CJ, Wu KG. Risk of cancer in patients with genital warts: a nationwide, population-based cohort study in Taiwan. PLoS ONE. 2017;12:1–15.

    Google Scholar 

  50. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. Screening for cervical cancer us preventive services task force recommendation statement. JAMA J Am Med Assoc. 2018;320:674–86.

    Google Scholar 

  51. Nguyen ML, Flowers L. Cervical cancer screening in immunocompromised women. Obstet Gynecol Clin N Am. 2013;40:339–57.

    Google Scholar 

  52. Moscicki AB, Flowers L, Huchko MJ, Long ME, MacLaughlin KL, Murphy J, et al. Guidelines for cervical cancer screening in immunosuppressed women without HIV infection. J Low Genit Tract Dis. 2019;23:87–101.

    PubMed  Google Scholar 

  53. ACOG. Management of vulvar intraepithelial neoplasia. Gynaecol. Perinatol. 2016;128:1–5.

    Google Scholar 

  54. Sinclair KA, Woods CR, Kirse DJ, Sinal SH. Anogenital and respiratory tract human papillomavirus infections among children: Age, gender, and potential transmission through sexual abuse. Pediatrics. 2005;116:815–25.

    PubMed  Google Scholar 

  55. Dominiak-Felden G, Cohet C, Atrux-Tallau S, Gilet H, Tristram A, Fiander A. Impact of human papillomavirus-related genital diseases on quality of life and psychosocial wellbeing: results of an observational, health-related quality of life study in the UK. BMC Public Health. 2013;13:1–11.

    Google Scholar 

  56. Bertolotti A, Milpied B, Fouéré S, Cabié A, Dupin N, Derancourt C. Methodologic gaps and risk of bias in randomized controlled trials of local anogenital wart treatments. J Am Acad Dermatol. 2019;81:1197–8.

    PubMed  Google Scholar 

  57. Barton S, Wakefield V, O’mahony C, Edwards S. Effectiveness of topical and ablative therapies in treatment of anogenital warts: a systematic review and network meta-analysis. BMJ Open. 2019;9:1–10.

    Google Scholar 

  58. Jung JM, Jung CJ, Lee WJ, Won CH, Lee MW, Choi JH, et al. Topically applied treatments for external genital warts in nonimmunocompromised patients: a systematic review and network meta-analysis. Br J Dermatol. 2020;183:24–36.

    CAS  PubMed  Google Scholar 

  59. Eron LJ, Judson F, Tucker S, Prawer S, Mills J, Murphy K, et al. Interferon therapy for condylomata acuminata. N Engl J Med. 1986;315:1059–64.

    CAS  PubMed  Google Scholar 

  60. Trial AMDPC, Edin F. Recurrent condylomata acuminata treated with recombinant interferon alfa-2a. JAMA. 1991;265:2684.

    Google Scholar 

  61. Stanley MA. Imiquimod and the imidazoquinolones: Mechanism of action and therapeutic potential. Clin Exp Dermatol. 2002;27:571–7.

    CAS  PubMed  Google Scholar 

  62. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small-antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3:196–200.

    CAS  PubMed  Google Scholar 

  63. Grillo-Ardila CF, Gaitán HG, Angel-Müller E, Ruiz-Parra AI, Lethaby A. Imiquimod for anogenital warts in non-immunocompromised adults. Cochrane Database Syst Rev. 2013:CD010389.

  64. Beutner KR, Tyring SK, Trofatter KF, Douglas JM, Spruance S, Owens ML, et al. Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob Agents Chemother. 1998;42:789–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Edwards L, Ferenczy A, Eron L, Baker D, Owens ML, Fox TL, et al. Self-administered topical 5% imiquimod cream for external anogenital warts. Arch Dermatol. 1998;134:25–30.

    CAS  PubMed  Google Scholar 

  66. Beutner KR, Spruance SL, Hougham AJ, Fox TL, Owens ML, Douglas J. Treatment of genital warts with an immune-response modifier (imiquimod). J Am Acad Dermatol. 1998;38:230–9.

    CAS  PubMed  Google Scholar 

  67. Ulrich C, Bichel J, Euvrard S, Guidi B, Proby CM, Van De Kerkhof PCM, et al. Topical immunomodulation under systemic immunosuppression: Results of a multicentre, randomized, placebo-controlled safety and efficacy study of imiquimod 5% cream for the treatment of actinic keratoses in kidney, heart, and liver transplant patients. Br J Dermatol. 2007;157:25–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown VL, Atkins CL, Ghali L, Cerio R, Harwood CA, Proby CM. Safety and efficacy of 5% imiquimod cream for the treatment of skin dysplasia in high-risk renal transplant recipients: randomized, double-blind, placebo-controlled trial. Arch Dermatol. 2005;141:985–93.

    CAS  PubMed  Google Scholar 

  69. Herrera S, Correa LA, Wolff JC, Gaviria A, Tyring SK, Sanclemente G. Effect of imiquimod in anogenital warts from HIV-positive men. J Clin Virol. 2007;39:210–4.

    CAS  PubMed  Google Scholar 

  70. Sanclemente G, Herrera S, Tyring SK, Rady PL, Zuleta JJ, Correa LA, et al. Human papillomavirus (HPV) viral load and HPV type in the clinical outcome of HIV-positive patients treated with imiquimod for anogenital warts and anal intraepithelial neoplasia. J Eur Acad Dermatology Venereol. 2007;21:1054–60.

    CAS  Google Scholar 

  71. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970;9:4999–5007.

    CAS  PubMed  Google Scholar 

  72. Lacey CJN, Woodhall SC, Wikstrom A, Ross J. 2012 European guideline for the management of anogenital warts. J Eur Acad Dermatology Venereol. 2013;27:263–70.

    Google Scholar 

  73. Culp OS, Magid MA, Kaplan IW. Podophyllin treatment of condylomata Acuminata. J Urol. 1944;51:655–60.

    Google Scholar 

  74. Kaplan IW. Condylomata acuminata. New Orleans Med Surg. 1942;94:388–90.

    Google Scholar 

  75. Lacey CJN, Goodall RL, Ragnarson Tennvall G, Maw R, Kinghorn GR, Fisk PG, et al. Randomised controlled trial and economic evaluation of podophyllotoxin solution, podophyllotoxin cream, and podophyllin in the treatment of genital warts. Sex Transm Infect. 2003;79:270–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards A, Atma-Ram A, Thin RN. Podophyllintoxin 0.5% v podophyllin 20% to treat penile warts. Genitourin Med. 1988;64:263–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kinghorn GR, McMillan A, Mulcahy F, Drake S, Lacey C, Bingham JS. An open, comparative, study of the efficacy of 0.5% podophyllotoxin lotion and 25% podophyllotoxin Solution in the treatment of condylomata acuminata in males and females. Int J STD AIDS. 1993;4:194–9.

    CAS  PubMed  Google Scholar 

  78. Mohanty KC. The cost effectiveness of treatment of genital warts with podophyllotoxin. Int J STD AIDS. 1994;5:253–6.

    CAS  PubMed  Google Scholar 

  79. Slater GE, Rumack BH, Peterson RG. Podophyllin poisoning. Systemic toxicity following cutaneous application. Obstet Gynecol. 1978;52:94–6.

    CAS  PubMed  Google Scholar 

  80. Moher LM, Maurer SA. Podophyllum toxicity: case report and literature review. J Fam Pract. 1979;9:237–40.

    CAS  PubMed  Google Scholar 

  81. Fisher AA. Severe systemic and local reactions to topical podophyllum resin. Cutis. 1981;28:233 (236, 242 passim).

    CAS  PubMed  Google Scholar 

  82. Rosen T. Green tea catechins: biologic properties, proposed mechanisms of action, and clinical implications. J Drugs Dermatol. 2012;11:e55-60.

    PubMed  Google Scholar 

  83. Nguyen HP, Doan HQ, Brunell DJ, Rady P, Tyring SK. Apoptotic gene expression in sinecatechins-treated external genital and perianal warts. Viral Immunol. 2014;27:556–8.

    CAS  PubMed  Google Scholar 

  84. Rösl F, Das BC, Lengert M, Geletneky K, zur Hausen H. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription. J Virol. 1997;71:362–70.

    PubMed  PubMed Central  Google Scholar 

  85. Tatti S, Stockfleth E, Beutner KR, Tawfik H, Elsasser U, Weyrauch P, et al. Polyphenon E®: A new treatment for external anogenital warts. Br J Dermatol. 2010;162:176–84.

    CAS  PubMed  Google Scholar 

  86. Tatti S, Swinehart JM, Thielert C, Tawfik H, Mescheder A, Beutner KR. Sinecatechins, a defined green tea extract, in the treatment of external anogenital warts: a randomized controlled trial. Obstet Gynecol. 2008;111:1371–9.

    PubMed  Google Scholar 

  87. Gross G, Meyer KG, Pres H, Thielert C, Tawfik H, Mescheder A. A randomized, double-blind, four-arm parallel-group, placebo-controlled Phase II/III study to investigate the clinical efficacy of two galenic formulations of Polyphenon® E in the treatment of external genital warts. J Eur Acad Dermatol Venereol. 2007;21:1404–12.

    CAS  PubMed  Google Scholar 

  88. Stockfleth E, Beti H, Orasan R, Grigorian F, Mescheder A, Tawfik H, et al. Topical Polyphenon® E in the treatment of external genital and perianal warts: A randomized controlled trial. Br J Dermatol. 2008;158:1329–38.

    CAS  PubMed  Google Scholar 

  89. Handley JM, Horner T, Maw RD, Lawther H, Dinsmore WW. Subcutaneous interferon alpha 2a combined with cryotherapy vs cryotherapy alone in the treatment of primary anogenital warts: A randomised observer blind placebo controlled study. Genitourin Med. 1991;67:297–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Damstra R, van Vloten W. Cryotherapy in the treatment of condylomata acuminata: a controlled study of 64 patients. J Dermatol Surg Oncol. 1991;17:273–6.

    CAS  PubMed  Google Scholar 

  91. Abdullah AN, Walzman M, Wade A. Treatment of external genital warts comparing cryotherapy (liquid nitrogen) and trichloroacetic acid. Sex Transm Dis. 1993;20:344–5.

    CAS  PubMed  Google Scholar 

  92. Wiley DJ, Douglas J, Beutner K, Cox T, Fife K, Moscicki AB, et al. External genital warts: Diagnosis, treatment, and prevention. Clin Infect Dis. 2002;35:S210–24.

    CAS  PubMed  Google Scholar 

  93. Duus BR, Philipsen T, Christensen JD, Lundvall F, Søndergaard J. Refractory condylomata acuminata: a controlled clinical trial of carbon dioxide laser versus conventional surgical treatment. Genitourin Med. 1985;61:59–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lindkaer JS. Comparison of podophyllin application with simple surgical excision in clearance and recurrence of perianal condylomata acuminata. Lancet. 1985;326:1146–8.

    Google Scholar 

  95. Orlando G, Fasolo MM, Beretta R, Merli S, Cargnel A. Combined surgery and cidofovir is an effective treatment for genital warts in HIV-infected patients. AIDS. 2002;16:447–50.

    CAS  PubMed  Google Scholar 

  96. Khawaja HT. Podophyllin versus scissor excision in the treatment of perianal condylomata acuminata: a prospective study. Br J Surg. 1989;76:1067–8.

    CAS  PubMed  Google Scholar 

  97. Kofoed K, Norrbom C, Forslund O, Møller C, Frøding LP, Pedersen AE, et al. Low prevalence of oral and nasal human papillomavirus in employees performing CO2-laser evaporation of genital warts or loop electrode excision procedure of cervical dysplasia. Acta Derm Venereol. 2015;95:173–6.

    PubMed  Google Scholar 

  98. Sawchuk WS, Weber PJ, Lowy DR, Dzubow LM. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection. J Am Acad Dermatol. 1989;21:41–9.

    CAS  PubMed  Google Scholar 

  99. Hallmo P, Naess O. Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon. Eur Arch Oto-rhino-laryngology. 1991;248:425–7.

    CAS  Google Scholar 

  100. Sherrard J, Riddell L. Comparison of the effectiveness of commonly used clinic-based treatments for external genital warts. Int J STD AIDS. 2007;18:365–8.

    PubMed  Google Scholar 

  101. Godley MJ, Bradbeer CS, Gellan M, Thin RNT. Cryotherapy compared with trichloroacetic acid in treating genital warts. Sex Transm Infect. 1987;63:390–2.

    CAS  Google Scholar 

  102. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64:1–137.

    PubMed  PubMed Central  Google Scholar 

  103. Andrei G, Snoeck R, Piette J, Delvenne P, De Clercq E. Antiproliferative effects of acyclic nucleoside phosphonates on human papillomavirus (HPV)-harboring cell lines compared with HPV-negative cell lines. Oncol Res. 1998;10:523–31.

    CAS  PubMed  Google Scholar 

  104. Snoeck R, Bossens M, Parent D, Delaere B, Degreef H, Van Ranst M, et al. Phase II double-blind, placebo-controlled study of the safety and efficacy of cidofovir topical gel for the treatment of patients with human papillomavirus infection. Clin Infect Dis. 2001;33:597–602.

    CAS  PubMed  Google Scholar 

  105. Anshelevich EE, Barbieri JS, Kovarik CL. Intralesional cidofovir for treatment of recalcitrant warts in both immunocompetent and immunocompromised patients: a retrospective analysis of 58 patients. J Am Acad Dermatol. 2020;84:206–7.

    PubMed  Google Scholar 

  106. Bienvenu B, Martinez F, Devergie A, Rybojad M, Rivet J, Bellenger P, et al. Topical use of cidofovir induced acute renal failure. Transplantation. 2002;73:661–2.

    CAS  PubMed  Google Scholar 

  107. Batista CS, Atallah ÁN, Saconato H, da Silva EMK. 5-FU for genital warts in non-immunocompromised individuals. Cochrane Database Syst Rev. 2020;2010:CD006562.

    Google Scholar 

  108. Recanati MA, Kramer KJ, Maggio JJ, Chao CR. Cadtharadin is superior to trichloroacetic acid for treatment of non-mucosal genital warts: a pilot randomized controlled trial. Clin Exp Obs Gynecol. 2018;45:383–6.

    Google Scholar 

  109. Yang J, Guo PY, Ming ZZ, Jian YZ, Huang N, Wen DQ. Interferon for the treatment of genital warts: a systematic review. BMC Infect Dis. 2009;9:156.

    PubMed  PubMed Central  Google Scholar 

  110. Hasumi K. A trial of topical idoxuridine for vulvar condyloma acuminatum. BJOG An Int J Obstet Gynaecol. 1987;94:366–8.

    CAS  Google Scholar 

  111. Happonen HP, Lassus A, Santalahti J, Forsstrom S, Lassus J. Topical idoxuridine for treatment of genital warts in males. A double-blind comparative study of 0.25% and 0.5% cream. Genitourin Med. 1990;66:254–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kreuter A, Wieland U. Lack of efficacy in treating condyloma acuminata and preventing recurrences with the recombinant quadrivalent human papillomavirus vaccine in a case series of immunocompetent patients. J Am Acad Dermatol. 2013;68:179–80.

    PubMed  Google Scholar 

  113. Lee HJ, Kim JK, Kim DH, Yoon MS. Condyloma accuminatum treated with recombinant quadrivalent human papillomavirus vaccine (types 6, 11, 16, 18). J Am Acad Dermatol. 2011;64:130–2.

    Google Scholar 

  114. Creasman C, Haas PA, Fox TA, Balazs M. Malignant transformation of anorectal giant condyloma acuminatum (Buschke-Loewenstein tumor). Dis Colon Rectum. 1989;32:481–7.

    CAS  PubMed  Google Scholar 

  115. Chu QD, Vezeridis MP, Libbey NP, Wanebo HJ. Giant condyloma acuminatum (Buschke-Lowenstein tumor) of the anorectal and perianal regions—analysis of 42 cases. Dis Colon Rectum. 1994;37:950–7.

    CAS  PubMed  Google Scholar 

  116. De Toma G, Cavallaro G, Bitonti A, Polistena A, Onesti MG, Scuderi N. Surgical management of perianal giant condyloma acuminatum (Buschke-Löwenstein tumor). Eur Surg Res. 2006;38:418–22.

    PubMed  Google Scholar 

  117. Pineda CE, Berry JM, Jay N, Palefsky JM, Welton ML. High-resolution anoscopy targeted surgical destruction of anal high-grade squamous intraepithelial lesions: a ten-year experience. Dis Colon Rectum. 2008;51:829–37.

    PubMed  Google Scholar 

  118. Schneider A, Hotz M, Gissmann L. Increased prevalence of human papillomaviruses in the lower genital tract of pregnant women. Int J Cancer. 1987;40:198–201.

    CAS  PubMed  Google Scholar 

  119. Kemp EA, Hakenewerth AM, Laurent SL, Gravitt PE, Stoerker J. Human papillomavirus prevalence in pregnancy. Obstet Gynecol. 1992;79:649–56.

    CAS  PubMed  Google Scholar 

  120. Briggs GG, Freeman RK, Towers CV, Forinash AB. Drugs in pregnancy and lactation. 11th ed. Philadelphia, PA: Wolters Kluwer; 2017.

    Google Scholar 

  121. Andersson NW, Andersen JT. Association between fetal safety outcomes and exposure to local podophyllotoxin during pregnancy. JAMA Dermatol. 2020;156:303–11.

    PubMed  PubMed Central  Google Scholar 

  122. Ciavattini A, Tsiroglou D, Vichi M, Di Giuseppe J, Cecchi S, Tranquilli AL. Topical Imiquimod 5% cream therapy for external anogenital warts in pregnant women: report of four cases and review of the literature. J Matern Neonatal Med. 2012;25:873–6.

    CAS  Google Scholar 

  123. Schwartz DB, Greenberg MD, Daoud Y, Reid R. Genital condylomas in pregnancy: Use of trichloroacetic acid and laser therapy. Am J Obstet Gynecol. 1988;158:1407–16.

    CAS  PubMed  Google Scholar 

  124. Silverberg MJ, Thorsen P, Lindeberg H, Grant LA, Shah KV. Condyloma in pregnancy is strongly predictive of juvenile-onset recurrent respiratory papillomatosis. Obstet Gynecol. 2003;101:645–52.

    PubMed  Google Scholar 

  125. Patsner B, Baker DA, Orr JW. Human papillomavirus genital tract infections during pregnancy. Clin Obstet Gynecol. 1990;33:258–67.

    CAS  PubMed  Google Scholar 

  126. CDC Child and Adolescent Vaccination Schedule. https://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html#. Accessed 1 Feb 2021.

  127. CDC Adult Vaccination Schedule. https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html#note-hpv. Accessed 1 Feb 2021.

  128. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis. 1998;26:541–53.

    CAS  PubMed  Google Scholar 

  129. Sucato G, Wald A, Wakabayashi E, Vieira J, Corey L. Evidence of latency and reactivation of both herpes simplex virus (HSV)- 1 and HSV-2 in the genital region. J Infect Dis. 1998;177:1069–72.

    CAS  PubMed  Google Scholar 

  130. Frampton AR, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther. 2005;12:891–901.

    CAS  PubMed  Google Scholar 

  131. Roizman B, Whitley RJ. An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol. 2013;67:355–74.

    CAS  PubMed  Google Scholar 

  132. Doll JR, Hoebe K, Thompson RL, Sawtell NM. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:1–28.

    Google Scholar 

  133. Wald A, Zeh J, Selke S, Warren T, Ryncarz AJ, Ashley R, et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N Engl J Med. 2000;342:844–50.

    CAS  PubMed  Google Scholar 

  134. Tronstein E, Johnston C, Huang ML, Selke S, Magaret A, Warren T, et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA J Am Med Assoc. 2011;305:1441–9.

    CAS  Google Scholar 

  135. Wald A, Ericsson M, Krantz E, Selke S, Corey L. Oral shedding of herpes simplex virus type 2. Sex Transm Infect. 2004;80:272–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Docherty JJ, Trimble JJ, Roman SR, Faulkner SC, Naugle FP, Mundon FK, et al. Lack of oral HSV-2 in a college student population. J Med Virol. 1985;16:283–7.

    CAS  PubMed  Google Scholar 

  137. Wald A. Genital HSV-1 infections. Sex Transm Infect. 2006;82:189–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mertz GJ, Coombs RW, Ashley R, Jourden J, Remington M, Winter C, et al. Transmission of genital herpes in couples with one symptomatic and one asymptomatic partner: a prospective study. J Infect Dis. 1988;157:1169–77.

    CAS  PubMed  Google Scholar 

  139. Wald A, Zeh J, Selke S, Ashley RL, Corey L. Virologic characteristics of subclinical and symptomatic genital herpes infections. N Engl J Med. 1995;333:770–5.

    CAS  PubMed  Google Scholar 

  140. Mertz GJ, Beneditti J, Ashley R, Selke SA, Corey L. Risk factors for the sexual transmission of genital herpes. Ann Intern Med. 1992;116:197–202.

    CAS  PubMed  Google Scholar 

  141. Koelle DM, Benedetti J, Langenberg A, Corey L. Asymptomatic reactivation of herpes simplex virus in women after the first episode of genital herpes. Ann Intern Med. 1992;116:433.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wald A, Zeh J, Selke S, Warren T, Ashley R, Corey L. Genital shedding of herpes simplex virus among men. J Infect Dis. 2002;186:S34–9.

    PubMed  Google Scholar 

  143. Krone MR, Wald A, Tabet SR, Paradise M, Corey L, Celum CL. Herpes simplex virus type 2 shedding in human immunodeficiency virus—negative men who have sex with men: frequency, patterns, and risk factors. Clin Infect Dis. 2000;30:261–7.

    CAS  PubMed  Google Scholar 

  144. Corey L, Wald A, Patel R, Sacks SL, Tyring SK, Warren T, et al. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. N Engl J Med. 2004;350:11–20.

    CAS  PubMed  Google Scholar 

  145. Abu-Raddad LJ, Magaret AS, Celum C, Wald A, Longini IM, Self SG, et al. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS One. 2008;3:e2230.

    PubMed  PubMed Central  Google Scholar 

  146. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS. 2006;20:73–83.

    PubMed  Google Scholar 

  147. Wald A, Link K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: A meta-analysis. J Infect Dis. 2002;185:45–52.

    PubMed  Google Scholar 

  148. Koelle DM, Abbo H, Peck A, Ziegweid K, Corey L. Direct recovery of herpes simplex virus (HSV)-specific T lymphocyte clones from recurrent genital HSV-2 lesions. J Infect Dis. 1994;169:956–61.

    CAS  PubMed  Google Scholar 

  149. Rebbapragada A, Wachihi C, Pettengell C, Sunderji S, Huibner S, Jaoko W, et al. Negative mucosal synergy between herpes simplex type 2 and HIV in the female genital tract. AIDS. 2007;21:589–98.

    PubMed  Google Scholar 

  150. Schacker T, Ryncarz AJ, Goddard J, Diem K, Shaughnessy M, Corey L. Frequent recovery of HIV-1 from genital herpes simplex virus lesions in HIV-1-infected men. J Am Med Assoc. 1998;280:61–6.

    CAS  Google Scholar 

  151. Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Bañez Ocfemia CM, et al. Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2008. Sex Transm Dis. 2013;40:187–93.

    PubMed  Google Scholar 

  152. McQuillan G, Kruszon-Moran D, Flagg EW, Paulose-Ram R. Prevalence of herpes simplex virus type 1 and type 2 in persons aged 14-49: United States, 2015-2016. NCHS Data Brief. 2018:1–8.

  153. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. J Am Med Assoc. 2006;296:964–73.

    CAS  Google Scholar 

  154. Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2-United States, 1999–2010. J Infect Dis. 2014;209:325–33.

    PubMed  Google Scholar 

  155. Corey L, Adams H, Brown Z, Holmes K. Genital herpes simplex virus infections: clinical manifestations, course, and complications. Ann Intern Med. 1983;98:958.

    CAS  PubMed  Google Scholar 

  156. Johnston C, Magaret A, Selke S, Remington M, Corey L, Wald A. Herpes simplex virus viremia during primary genital infection. J Infect Dis. 2008;198:31–4.

    PubMed  Google Scholar 

  157. Lautenschlager S, Eichmann A. The heterogeneous clinical spectrum of genital herpes. Dermatology. 2001;202:211–9.

    CAS  PubMed  Google Scholar 

  158. Sasso BM, Florence MEB, Magalhaes RF, Velho PENF, de Souza EM, Cintra ML. Herpes simplex virus mucocutaneous tumoural lesions—systematic review. J Clin Virol. 2020;123:104246. https://doi.org/10.1016/j.jcv.2019.104246.

    Article  PubMed  Google Scholar 

  159. Legoff J, Péré H, Bélec L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol J. 2014;11:83.

    PubMed  PubMed Central  Google Scholar 

  160. Ngo TD, Laeyendecker O, La H, Hogrefe W, Morrow RA, Quinn TC. Use of commercial enzyme immunoassays to detect antibodies to the herpes simplex virus type 2 glycoprotein g in a low-risk population in Hanoi. Vietnam Clin Vaccine Immunol. 2008;15:382–4.

    CAS  PubMed  Google Scholar 

  161. Durdu M, Baba M, Seçkin D. The value of Tzanck smear test in diagnosis of erosive, vesicular, bullous, and pustular skin lesions. J Am Acad Dermatol. 2008;59:958–64.

    PubMed  Google Scholar 

  162. Noyan MA, Durdu M, Eskiocak AH. TzanckNet: a convolutional neural network to identify cells in the cytology of erosive-vesiculobullous diseases. Sci Rep. 2020;10:1–7.

    Google Scholar 

  163. Burrows J, Nitsche A, Bayly B, Walker E, Higgins G, Kok T. Detection and subtyping of Herpes simplex virus in clinical samples byLightCycler PCR, enzyme immunoassay and cell culture. BMC Microbiol. 2002;2:1–7.

    Google Scholar 

  164. Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem. 1978;253:8721–7.

    CAS  PubMed  Google Scholar 

  165. Tyring SK, Douglas JM, Corey L, Spruance SL, Esmann J. A randomized, placebo-controlled comparison of oral valacyclovir and acyclovir in immunocompetent patients with recurrent genital herpes infections. Arch Dermatol. 1998;134:185–91.

    CAS  PubMed  Google Scholar 

  166. Aoki FY, Tyring S, Diaz-Mitoma F, Gross G, Gao J, Hamed K. Single-day, patient-initiated famciclovir therapy for recurrent genital herpes: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2006;42:8–13.

    CAS  PubMed  Google Scholar 

  167. Bryson YJ, Dillon M, Lovett M, Acuna G, Taylor S, Cherry JD, et al. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir. N Engl J Med. 1983;308:916–21.

    CAS  PubMed  Google Scholar 

  168. Fife K, Barbarash RA, Rudolph T, Degregorio B, Roth R. Valaciclovir versus acyclovir in the treatment of first-episode genital herpes infection. Sex Transm Dis. 1997;24:481–6.

    CAS  PubMed  Google Scholar 

  169. Reichman RC, Badger GJ, Mertz GJ, Corey L, Richman DD, Connor JD, et al. Treatment of recurrent genital herpes simplex infections with oral acyclovir. JAMA J Am Med Assoc. 1984;251:2103.

    CAS  Google Scholar 

  170. Fife KH, Almekinder J, Ofner S. A comparison of one year of episodic or suppressive treatment of recurrent genital herpes with valacyclovir. Sex Transm Dis. 2007;34:297–301.

    CAS  PubMed  Google Scholar 

  171. Sacks SL, Aoki FY, Diaz-Mitoma F, Sellors J, Shafran S. Patient-initiated, twice-daily oral famciclovir for early recurrent genital herpes. JAMA. 1996;276:44.

    CAS  PubMed  Google Scholar 

  172. Douglas JM, Critchlow C, Benedetti J, Mertz GJ, Connor JD, Hintz MA, et al. A double-blind study of oral acyclovir for suppression of recurrences of genital herpes simplex virus infection. N Engl J Med. 1984;310:1551–6.

    CAS  PubMed  Google Scholar 

  173. Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev. 2003;16:114–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH. Herpes simplex virus resistant to acyclovir. A study in tertiary care center. Ann Intern Med. 1990;112:416–22.

    CAS  PubMed  Google Scholar 

  175. Chen Y, Scieux C, Garrait V, Socié G, Rocha V, Molina J, et al. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation. Clin Infect Dis. 2000;31:927–35.

    CAS  PubMed  Google Scholar 

  176. Chatis PA, Crumpacker CS. Resistance of herpesviruses to antiviral drugs. Antimicrob Agents Chemother. 1992;36:1589–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Safrin S, Elbeik T, Phan L, Robinson D, Rush J, Elbaggari A, et al. Correlation between response to acyclovir and foscarnet therapy and in vitro susceptibility result for isolates of herpes simplex virus from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1994;38:1246–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lalezari J, Schacker T, Feinberg J, Gathe J, Lee S, Cheung T, et al. A randomized, double-blind, placebo-controlled trial of cidofovir gel for the treatment of acyclovir-unresponsive mucocutaneous herpes simplex virus infection in patients with AIDS. J Infect Dis. 1997;176:892–8.

    CAS  PubMed  Google Scholar 

  179. Castelo-Soccio L, Bernardin R, Stern J, Goldstein S, Kovarik C. Successful treatment of acyclovir-resistant herpes simplex virus with intralesional cidofovir. Arch Dermatol. 2010;146:124.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Wanat KA, Gormley RH, Rosenbach M, Kovarik CL. Intralesional cidofovir for treating extensive genital verrucous herpes simplex virus infection. JAMA Dermatol. 2013;149:881–3.

    PubMed  Google Scholar 

  181. Wagstaff AJ, Bryson HM. Foscarnet—a reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs. 1994;48:199–226.

    CAS  PubMed  Google Scholar 

  182. Vandercam B, Moreau M, Goffin E, Marot JC, Cosyns JP, Jadoul M. Cidofovir-induced end-stage renal failure. Clin Infect Dis. 1999;29:948–9.

    CAS  PubMed  Google Scholar 

  183. Kim JH, Schaenman JM, Ho DY, Brown JMY. Treatment of acyclovir-resistant herpes simplex virus with continuous infusion of high-dose acyclovir in hematopoietic cell transplant patients. Biol Blood Marrow Transplant. 2011;17:259–64.

    PubMed  Google Scholar 

  184. Gilbert J, Drehs MM, Weinberg JM. Topical imiquimod for acyclovir-unresponsive herpes simplex virus 2 infection. Arch Dermatol. 2001;137:1015–7.

    CAS  PubMed  Google Scholar 

  185. Bernstein DI, Cardin RD, Smith GA, Pickard GE, Sollars PJ, Dixon DA, et al. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. npj Vaccines. 2020;5:1–8.

    Google Scholar 

  186. Magaret AS, Mujugira A, Hughes JP, Lingappa J, Bukusi EA, Debruyn G, et al. Effect of condom use on per-act HSV-2 transmission risk in HIV-1, HSV-2-discordant couples. Clin Infect Dis. 2015;62:456–61.

    PubMed  PubMed Central  Google Scholar 

  187. Wald A, Langenberg AGM, Link K, Izu AE, Ashley R, Warren T, et al. Effect of condoms on reducing the transmission of herpes simplex virus type 2 from men to women. J Am Med Assoc. 2001;285:3100–6.

    CAS  Google Scholar 

  188. Mujugira A, Magaret AS, Celum C, Baeten JM, Lingappa JR, Morrow RA, et al. Daily acyclovir to decrease herpes simplex virus type 2 (HSV-2) transmission from HSV-2/HIV-1 coinfected persons: A randomized controlled trial. J Infect Dis. 2013;208:1366–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Delaney S, Gardella C, Daruthayan C, Saracino M, Drolette L, Corey L, et al. A prospective cohort study of partner testing for herpes simplex virus and sexual behavior during pregnancy. J Infect Dis. 2012;206:486–94.

    PubMed  PubMed Central  Google Scholar 

  190. Brown ZA, Wald A, Morrow RA, Zeh J, Corey L. Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. J Am Med Assoc. 2003;289:203–9.

    Google Scholar 

  191. ACOG. Management of genital herpes in pregnancy. Obstet Gynecol. 2020;135:e193-202.

    Google Scholar 

  192. Stone KM, Reiff-Eldridge R, White AD, Cordero JF, Brown Z, Alexander ER, et al. Pregnancy outcomes following systemic prenatal acyclovir exposure: conclusions from the international acyclovir pregnancy registry, 1984–1999. Birth Defects Res Part A Clin Mol Teratol. 2004;70:201–7.

    CAS  Google Scholar 

  193. Sheffield JS, Hill JB, Hollier LM, Laibl VR, Roberts SW, Sanchez PJ, et al. Valacyclovir prophylaxis to prevent recurrent herpes at delivery. Obstet Gynecol. 2006;108:141–7.

    PubMed  Google Scholar 

  194. Beymer MR, Weiss RE, Bolan RK, Rudy ET, Bourque LB, Rodriguez JP, et al. Sex on demand: Geosocial networking phone apps and risk of sexually transmitted infections among a cross-sectional sample of men who have sex with men in Los Angeles county. Sex Transm Infect. 2014;90:567–72.

    PubMed  PubMed Central  Google Scholar 

  195. Ness RB, Smith KJ, Chang CCH, Schisterman EF, Bass DC. Prediction of pelvic inflammatory disease among young, single, sexually active women. Sex Transm Dis. 2006;33:137–42.

    PubMed  Google Scholar 

  196. Lewnard JA, Berrang-Ford L. Internet-based partner selection and risk for unprotected anal intercourse in sexual encounters among men who have sex with men: a meta-analysis of observational studies. Sex Transm Infect. 2014;90:290–6.

    PubMed  Google Scholar 

  197. Niccolai LM, Ethier KA, Kershaw TS, Lewis JB, Meade CS, Ickovics JR. New sex partner acquisition and sexually transmitted disease risk among adolescent females. J Adolesc Health. 2004;34:216–23.

    PubMed  Google Scholar 

  198. Chan PA, Robinette A, Montgomery M, Almonte A, Cu-Uvin S, Lonks JR, et al. Extragenital infections caused by chlamydia trachomatis and neisseria gonorrhoeae: a review of the literature. Infect Dis Obstet Gynecol. 2016;2016:5758387.

    PubMed  PubMed Central  Google Scholar 

  199. USPSTF Guidelines [Internet]. [cited 2021 Jul 4]. https://www.uspreventiveservicestaskforce.org. Accessed 1 Feb 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora K. Karagounis.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

TKK and MKP have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent

Standard dermatology clinic photography consent was utilized. None of the photos contain identifiable features.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author’s contributions

TKK wrote the paper. TKK and MKP commented on and reviewed the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagounis, T.K., Pomeranz, M.K. Viral Venereal Diseases of the Skin. Am J Clin Dermatol 22, 523–540 (2021). https://doi.org/10.1007/s40257-021-00606-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-021-00606-7

Navigation