Skip to main content
Log in

Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The unit-cell-size comparable ultrathin nanowires(UCNWs) with typical cross-sectional dimension of around one nanometer, comparable to the unit-cell-size of inorganic materials, exhibit unique properties different from traditional nanomaterials. However, their facile and general synthesis is still a great challenge, since it not only demands the anisotropic growth in one direction, but also needs to completely restrict the growth in the other two dimensions. In this review, we summarize and introduce a strategy to prepare UCNWs using nanoclusters as synthons, which is promising to be a general synthesis method for UCNWs. We start with the introduction to the definition and characteristics of UCNWs. Subsequently, the key problems of UCNWs synthesis are analyzed from the perspective of thermodynamics and the strategy of using nanoclusters as synthons is proposed. Then, the related works about synthesis of UCNWs using magic-size clusters(MSCs) and polyoxometalate(POM) clusters as synthons are introduced and carefully discussed. Finally, challenges and opportunities are also elaborately discussed. This review is anticipated to provide a panoramic sketch and future directions toward the general synthesis of UCNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mannix A. J., Kiraly B., Hersam M. C., Guisinger N. P., Nat. Rev. Chem., 2017, 1, 0014

    CAS  Google Scholar 

  2. Nasilowski M., Mahler B., Lhuillier E., Ithurria S., Dubertret B., Chem. Rev., 2016, 116, 10934

    CAS  PubMed  Google Scholar 

  3. Quan L., Kang J., Ning C., Yang P., Chem. Rev., 2019, 119, 9153

    CAS  PubMed  Google Scholar 

  4. Gutiérrez H. R., Kuno Hong S. S., Ruoff R. S., Huang Gupta J. A., ACS Nano, 2013, 7, 2898

    PubMed  Google Scholar 

  5. Garnett E., Mai L., Yang P., Chem. Rev., 2019, 119, 8955

    CAS  PubMed  Google Scholar 

  6. Ni B., Shi Y., Wang X., Adv. Mater., 2018, 30, e1802031

    PubMed  Google Scholar 

  7. Voiry D., Shin H. S., Loh K. P., Chhowalla M., Nat. Rev. Chem., 2018, 2, 0105

    CAS  Google Scholar 

  8. Xu H., Shang H., Wang C., Du Y., Adv. Funct. Mater., 2020, 30, 2000793

    CAS  Google Scholar 

  9. Li M., Zhao Z., Cheng T., Fortunelli A., Chen C., Yu R., Zhang Q., Gu L., Merinov B. V., Lin Z., Zhu E., Yu T., Jia Q., Guo J., Zhang L., Goddard W. A., Huang Y., Duan X., Science, 2016, 354, 1414

    CAS  PubMed  Google Scholar 

  10. Zhang H., Wang Y., Zuo S., Zhou W., Zhang J., Lou X. W. D., J. Am. Chem. Soc., 2021, 143, 2173

    CAS  PubMed  Google Scholar 

  11. Peng L., Hu L., Fang X., Adv. Mater., 2013, 25, 5321

    CAS  PubMed  Google Scholar 

  12. Tong Y., Bohn B. J., Bladt E., Wang K., Muller-Buschbaum P., Bals S., Urban A. S., Polavarapu L., Feldmann J., Angew. Chem. Int. Ed., 2017, 56, 13887

    CAS  Google Scholar 

  13. Chueh Y. L., Hsieh C. H., Chang M. T., Chou L. J., Lao C. S., Song J. H., Gan J. Y., Wang Z. L., Adv. Mater., 2007, 19, 143

    CAS  Google Scholar 

  14. Wang D., Liu X., Kang Y., Wang X., Wu Y., Fang S., Yu H., Memon M. H., Zhang H., Hu W., Mi Z., Fu L., Sun H., Long S., Nat. Electron., 2021, 4, 645

    CAS  Google Scholar 

  15. Wang X., Xu X., Niu C., Meng J., Huang M., Liu X., Liu Z., Mai L., Nano Lett., 2017, 17, 544

    CAS  PubMed  Google Scholar 

  16. Shao B., Wan S., Yang C., Shen J., Li Y., You H., Chen D., Fan C., Liu K., Zhang H., Angew. Chem. Int. Ed., 2020, 59, 18213

    CAS  Google Scholar 

  17. Meng Z., Liu Q., Zhang Y., Sun J., Yang C., Li H., Loznik M., Göstl R., Chen D., Wang F., Clark N. A., Zhang H., Herrmann A., Liu K., Adv. Mater., 2022, 34, 2106208

    CAS  Google Scholar 

  18. Wei Z., Sun J., Lu S., Liu Y., Wang B., Zhao L., Wang Z., Liu K., Li J., Su J., Wang F., Zhang H., Yang Y., Adv. Mater., 2022, 34, 2110062

    CAS  Google Scholar 

  19. Wan S., Cong W., Shao B., Wu B., He Q., Cheng Q., Shen J., Chen D., Hu H., Ye F., Fan C., Zhang H., Liu K., Nano Today, 2021, 38, 101115

    CAS  Google Scholar 

  20. Sun J., Zhang J., Zhao L., Wan S., Wu B., Ma C., Li J., Wang F., Xing X., Chen D., Zhang H., Liu K., CCS Chem., 2023, 5, 1242

    CAS  Google Scholar 

  21. Gülseren O., Ercolessi F., Tosatti E., Phys. Rev. Lett., 1998, 80, 3775

    Google Scholar 

  22. Kondo Y., Takayanagi K., Science, 2000, 289, 606

    CAS  PubMed  Google Scholar 

  23. Barrigon E., Heurlin M., Bi Z., Monemar B., Samuelson L., Chem. Rev., 2019, 119, 9170

    CAS  PubMed  Google Scholar 

  24. Cademartiri L., Malakooti R., O’Brien P. G., Migliori A., Petrov S., Kherani N. P., Ozin G. A., Angew. Chem. Int. Ed., 2008, 47, 3814

    CAS  Google Scholar 

  25. Cademartiri L., Ozin G. A., Adv. Mater., 2009, 21, 1013

    CAS  Google Scholar 

  26. Whitesides G. M., Nature, 2006, 442, 368

    CAS  PubMed  Google Scholar 

  27. Cademartiri L., Montanari E., Calestani G., Migliori A., Guagliardi A., Ozin G. A., J. Am. Chem. Soc., 2006, 128, 10337

    CAS  PubMed  Google Scholar 

  28. Thomson J. W., Cademartiri L., MacDonald M., Petrov S., Calestani G., Zhang P., Ozin G. A., J. Am. Chem. Soc., 2010, 132, 9058

    CAS  PubMed  Google Scholar 

  29. Cademartiri L., Guerin G., Bishop K. J., Winnik M. A., Ozin G. A., J. Am. Chem. Soc., 2012, 134, 9327

    CAS  PubMed  Google Scholar 

  30. Hu S., Liu H., Wang P., Wang X., J. Am. Chem. Soc., 2013, 135, 11115

    CAS  PubMed  Google Scholar 

  31. Yuan F., Ouyang C., Yang M., Shi W., Ren W., Shen Y., Wei Y., Deng X., Wang X., Angew. Chem. Int. Ed., 2023, 62, e202214571

    CAS  Google Scholar 

  32. Liu H., Gong Q., Yue Y., Guo L., Wang X., J. Am. Chem. Soc., 2017, 139, 8579

    CAS  PubMed  Google Scholar 

  33. Zhang S., Lin H., Yang H., Ni B., Li H., Wang X., Adv. Funct. Mater., 2019, 29, 1903477

    Google Scholar 

  34. Zhang S., Shi W., Yu B., Wang X., J. Am. Chem. Soc., 2022, 144, 16389

    CAS  PubMed  Google Scholar 

  35. Huo D., Kim M. J., Lyu Z., Shi Y., Wiley B. J., Xia Y., Chem. Rev., 2019, 119, 897

    Google Scholar 

  36. Wang C., Hou Y., Kim J., Sun S., Angew. Chem. Int. Ed., 2007, 46, 6333

    CAS  Google Scholar 

  37. Du Y., Zhang Y., Yan Z., Sun L., Yan C. H., J. Am. Chem. Soc., 2009, 131, 16364

    CAS  PubMed  Google Scholar 

  38. Huo Z., Tsung C. K., Huang W., Zhang X., Yang P., Nano Lett., 2008, 8, 2041

    CAS  PubMed  Google Scholar 

  39. Yu T., Joo J., Park Y., Hyeon T., J. Am. Chem. Soc., 2006, 128, 1786

    CAS  PubMed  Google Scholar 

  40. Ni B., Zhang Q., Ouyang C., Zhang S., Yu B., Zhuang J., Gu L., Wang X., CCS Chem., 2020, 2, 642

    CAS  Google Scholar 

  41. Cunningham P. D., Coropceanu I., Mulloy K., Cho W., Talapin D. V., ACS Nano, 2020, 14, 3847

    CAS  PubMed  Google Scholar 

  42. Fu H., Xu Y., Qiu D., Ma T., Yue G., Zeng Z., Song L., Wang S., Zhang S., Du Y., Yan C. H., Angew. Chem. Int. Ed., 2022, 61, e202212251

    CAS  Google Scholar 

  43. LaMer V. K., Dinegar R. H., J. Am. Chem. Soc., 1950, 72, 4847

    CAS  Google Scholar 

  44. LaMer V. K., Ind. Eng. Chem. Res., 1952, 44, 1270

    CAS  Google Scholar 

  45. Thanh N. T., Maclean N., Mahiddine S., Chem. Rev., 2014, 114, 7610

    CAS  PubMed  Google Scholar 

  46. Embden J., Chesman A. S. R., Jasieniak J. J., Chem. Mater., 2015, 27, 2246

    Google Scholar 

  47. Ryadnov M. G., Woolfson D. N., J. Am. Chem. Soc., 2004, 126, 7454

    CAS  PubMed  Google Scholar 

  48. Levin A., Hakala T. A., Schnaider L., Bernardes G. J. L., Gazit E., Knowles T. P. J., Nat. Rev. Chem., 2020, 4, 615

    CAS  Google Scholar 

  49. Jiang Y., Zhang W., Yang F., Wan C., Cai X., Liu J., Zhang Q., Li Z., Han W., Sci. Adv., 2021, 7, eabd0492

    CAS  PubMed  Google Scholar 

  50. So C. R., Hayamizu Y., Yazici H., Gresswell C., Khatayevich D., Tamerler C., Sarikaya M., ACS Nano, 2012, 6, 1648

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nalbach M., Raiteri P., Klassen S., Schäfer S., Gale J. D., Bechstein R., Kühnle A., J. Phys. Chem. C, 2017, 121, 24144

    CAS  Google Scholar 

  52. Fu C., Lin H., Macleod J. M., Krayev A., Rosei F., Perepichka D. F., Chem. Mater., 2016, 28, 951

    CAS  Google Scholar 

  53. Liu L., Li Q., Zhang S., Wang X., Hoffmann S. V., Li J., Liu Z., Besenbacher F., Dong, M., Adv. Sci., 2016, 3, 1500369

    Google Scholar 

  54. Chen J., Zhu E., Liu J., Zhang S., Lin Z., Duan X., Heinz H., Huang Y., Yoreo J. J., Science, 2018, 362, 1135

    CAS  PubMed  Google Scholar 

  55. Wang W., Zhang M., Pan Z., Biesold G. M., Liang S., Rao H., Lin Z., Zhong X., Chem. Rev., 2022, 122, 4091

    CAS  PubMed  Google Scholar 

  56. Kudera S., Zanella M., Giannini C., Rizzo A., Li Y., Gigli G., Cingolani R., Ciccarella G., Spahl W., Parak W. J., Manna L., Adv. Mater., 2007, 19, 548

    CAS  Google Scholar 

  57. Baletto F., Ferrando R., Rev. Mod. Phys., 2005, 77, 371

    CAS  Google Scholar 

  58. Song Y. F., Tsunashima R., Chem. Soc. Rev., 2012, 41, 7384

    CAS  PubMed  Google Scholar 

  59. Wang S., Yang G., Chem. Rev., 2015, 115, 4893

    CAS  PubMed  Google Scholar 

  60. Bootharaju M. S., Baek W., Lee S., Chang H., Kim J., Hyeon T., Small, 2021, 17, e2002067

    PubMed  Google Scholar 

  61. Singh V., Priyanka More P. V., Hemmer E., Mishra Y. K., Khanna P. K., Mater. Adv., 2021, 2, 1204

    CAS  Google Scholar 

  62. Fojtik A., Weller H., Koch U., Henglein A., Phys. Chem., 1984, 88, 969

    CAS  Google Scholar 

  63. Peng Z. A., Peng X. G., J. Am. Chem. Soc., 2002, 124, 3343

    CAS  PubMed  Google Scholar 

  64. Yu Q., Liu C., J. Phys. Chem. C, 2009, 113, 12766

    CAS  Google Scholar 

  65. Soloviev V. N., Eichhofer A., Fenske D., Banin U., J. Am. Chem. Soc., 2000, 122, 2673

    CAS  Google Scholar 

  66. Yang J., Fainblat R., Kwon S. G., Muckel F., Yu J. H., Terlinden H., Kim B. H., Lavarone D., Choi M. K., Kim I. Y., Park I., Hong H. K., Lee J., Son J. S., Lee Z., Kang K., Hwang S. J., Bacher G., Hyeon T., J. Am. Chem. Soc., 2015, 137, 12776

    CAS  PubMed  Google Scholar 

  67. Kwon Y., Oh J., Lee E., Lee S. H., Agnes A., Bang G., Kim J., Kim D., Kim S., Nat. Commun., 2020, 11, 3127

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao Y., Guo J., Shi R., Waterhouse G. I. N., Pan J., Du Z., Yao Q., Wu L. Z., Tung C. H., Xie J., Zhang T., Nat. Commun., 2018, 9, 2379

    PubMed  PubMed Central  Google Scholar 

  69. Fu H., Yang D., Qiu D., Yan C. H., Cai R., Du Y., Tan W., J. Phys. Chem. Lett., 2022, 13, 1855

    CAS  PubMed  Google Scholar 

  70. Harrell S. M., McBride J. R., Rosenthal S. J., Chem. Mater., 2013, 25, 1199

    CAS  Google Scholar 

  71. Joo J., Son J. S., Kwon S. G., Yu J. H., Hyeon T., J. Am. Chem. Soc., 2006, 128, 5632

    CAS  PubMed  Google Scholar 

  72. Son J. S., Wen X. D., Joo J., Chae J., Baek S. I., Park K., Kim J. H., An K., Yu J. H., Kwon S. G., Choi S. H., Wang Z., Kim Y. W., Kuk Y., Hoffmann R., Hyeon T., Angew. Chem. Int. Ed., 2009, 48, 6861

    CAS  Google Scholar 

  73. Liu Y. H., Wayman V. L., Gibbons P. C., Loomis R. A., Buhro W. E., Nano Lett., 2010, 10, 352

    CAS  PubMed  Google Scholar 

  74. Ithurria S., Bousquet G., Dubertret B., J. Am. Chem. Soc., 2011, 133, 3070

    CAS  PubMed  Google Scholar 

  75. Liu Y. H., Wang F., Wang Y., Gibbons P. C., Buhro W. E., J. Am. Chem. Soc., 2011, 133, 17005

    CAS  PubMed  Google Scholar 

  76. Wang Y., Liu Y. H., Zhang Y., Wang F., Kowalski P. J., Rohrs H. W., Loomis R. A., Gross M. L., Buhro W. E., Angew. Chem. Int. Ed., 2012, 51, 6154

    CAS  Google Scholar 

  77. Wang Y., Zhang Y., Wang F., Giblin D. E., Hoy J., Rohrs H. W., Loomis R. A., Buhro W. E., Chem. Mater., 2014, 26, 2233

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y., Zhou Y., Zhang Y., Buhro W. E., Inorg. Chem., 2015, 54, 1165

    CAS  PubMed  Google Scholar 

  79. Yang J., Muckel F., Baek W., Fainblat R., Chang H., Bacher G., Hyeon T., J. Am. Chem. Soc., 2017, 139, 6761

    CAS  PubMed  Google Scholar 

  80. Berends A. C., de Mello Donega C., J. Phys. Chem. Lett., 2017, 8, 4077

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Busatto S., De Mello Donega C., ACS Mater. Au, 2022, 2, 237

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nevers D. R., Williamson C. B., Savitzky B. H., Hadar I., Banin U., Kourkoutis L. F., Hanrath T., Robinson R. D., J. Am. Chem. Soc., 2018, 140, 3652

    CAS  PubMed  Google Scholar 

  83. Han H., Kallakuri S., Yao Y., Williamson C. B., Nevers D. R., Savitzky B. H., Skye R. S., Xu M., Voznyy O., Dshemuchadse J., Kourkoutis L. F., Weinstein S. J., Hanrath T., Robinson R. D., Nat. Mater., 2022, 21, 518

    CAS  PubMed  Google Scholar 

  84. Busatto S., Spallacci C., Meeldijk J. D., Howes S., de Mello Donega C., J. Phys. Chem. C, 2022, 126, 15280

    CAS  Google Scholar 

  85. Gumerova N. I., Rompel A., Nat. Rev. Chem., 2018, 2, 0112

    CAS  Google Scholar 

  86. Cheng X., Zhang S., Wang X., Nano Lett., 2021, 21, 9845

    CAS  PubMed  Google Scholar 

  87. Liu J., Shi W., Ni B., Yang Y., Li S., Zhuang J., Wang X., Nat. Chem., 2019, 11, 839

    CAS  PubMed  Google Scholar 

  88. Horn M. R., Singh A., Alomari S., Goberna-Ferrón S., Benages-Vilau R., Chodankar N., Motta N., Ostrikov K., MacLeod J., Sonar P., Gomez-Romero P., Dubal D., Energy Environ. Sci., 2021, 14, 1652

    CAS  Google Scholar 

  89. Zhang S., Shi W., Siegler T. D., Gao X., Ge F., Korgel B. A., He Y., Li S., Wang X., Angew. Chem. Int. Ed., 2019, 58, 8730

    CAS  Google Scholar 

  90. Liu Q., Wang X., Angew. Chem. Int. Ed., 2023, 62, e202217764

    CAS  Google Scholar 

  91. Zhang S., Shi W., Rong S., Li S., Zhuang J., Wang X., J. Am. Chem. Soc., 2020, 142, 1375

    CAS  PubMed  Google Scholar 

  92. Zhang S., Wang X., Acc. Chem. Res., 2022, 3, 1285

    CAS  Google Scholar 

  93. Lu Q., Huang B., Zhang Q., Chen S., Gu L., Song L., Yang Y., Wang X., J. Am. Chem. Soc., 2021, 143, 9858

    CAS  PubMed  Google Scholar 

  94. Liu Q., Zhang Q., Shi W., Hu H., Zhuang J., Wang X., Nat. Chem., 2022, 14, 433

    PubMed  Google Scholar 

  95. Zhang S., Shi W., Wang X., Science, 2022, 377, 100

    CAS  PubMed  Google Scholar 

  96. Zhang S., Lu Q., Yu B., Cheng X., Zhuang J., Wang X., Adv. Funct. Mater., 2021, 31, 2100703

    CAS  Google Scholar 

  97. Zhang S., Liu N., Wang H., Lu Q., Shi W., Wang X., Adv. Mater., 2021, 33, e2100576

    PubMed  Google Scholar 

  98. Yang H., Yang D., Wang X., Angew. Chem. Int. Ed., 2020, 59, 15527

    CAS  Google Scholar 

  99. Liu J., Shi W., Wang X., J. Am. Chem. Soc., 2021, 143, 16217

    CAS  PubMed  Google Scholar 

  100. Liu Q., He S., Yu B., Cheng X., Shi W., Wang X., Adv. Mater., 2022, 34, e2206178

    PubMed  Google Scholar 

  101. Liu J., Wang S., Liu N., Yang D., Wang H., Hu H., Zhuang J., Wang X., Small, 2021, 17, e2006260

    PubMed  Google Scholar 

  102. Yang D., Zuo S., Yang H., Wang X., Adv. Energy Mater., 2021, 11, 2100272

    CAS  Google Scholar 

  103. Schaaff T. G., Shafigullin M. N., Khoury J. T., Vezmar I., Whetten R. L., Cullen W. G., First P. N., J. Phys. Chem. B, 1997, 101, 7885

    CAS  Google Scholar 

  104. Xie Y., Shen Y., Duan G., Han J., Zhang L., Lu X., Mater. Chem. Front., 2020, 4, 2205

    CAS  Google Scholar 

  105. Kwon Y., Kim S., NPG Asia Mater., 2021, 13, 37

    CAS  Google Scholar 

  106. Ning J., Banin U., Chem. Commun., 2017, 53, 2626

    CAS  Google Scholar 

  107. Sadeghi O., Zakharov L. N., Nyman M., Science, 2015, 347, 1359

    CAS  PubMed  Google Scholar 

  108. George E. P., Raabe D., Ritchie R. O., Nat. Rev. Mater., 2019, 4, 515

    CAS  Google Scholar 

  109. Oses C., Toher C., Curtarolo S., Nat. Rev. Mater., 2020, 5, 295

    CAS  Google Scholar 

  110. Liu J., Li Y., Chen Z., Liu N., Zheng L., Shi W., Wang X., J. Am. Chem. Soc., 2022, 144, 23191

    CAS  PubMed  Google Scholar 

  111. Elimelech O., Oded M., Harries D., Banin U., ACS Nano, 2023, 17, 5852

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tully R. B., Courtois H., Hoffman Y., Pomarede D., Nature, 2014, 513, 71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21971117), the Functional Research Funds for the Central Universities, Nankai University, China(No.63186005), the Project of Tianjin Key Lab for Rare Earth Materials and Applications, China(No.ZB19500202), the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization, China (No.RERU2019001), the “111” Project from China(No.B18030), the Outstanding Youth Project of the Tianjin Natural Science Foundation, China (No.20JCJQJC00130), the Key Project of Tianjin Natural Science Foundation, China(No.20JCZDJC00650), and the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, China (No.2022GXYSOF07).

We thank the Haihe Laboratory of Sustainable Chemical Transformations(Tianjin, China) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Du.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Du, Y. Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures. Chem. Res. Chin. Univ. 39, 568–579 (2023). https://doi.org/10.1007/s40242-023-3121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3121-2

Keywords

Navigation