Skip to main content
Log in

Direct Observation of Crystalline Distortions in Mechanically Exfoliated Low-symmetric 2D Materials

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Low-symmetrical two-dimensional(LSTD) materials have been increasing rapidly as a new exciting branch of two-dimensional (2D) materials, and their intrinsic in-plane anisotropic properties have been widely applied for polar and even novel devices. From a measurement perspective, anisotropy is also a valuable gauge for examining the properties changes of LSTD materials but is less investigated. Herein we demonstrate that the direct imaging of optical anisotropy of LSTD materials is an advanced methodology, achieving simultaneous measurement of morphology and highly sensitive intrinsic property, to examine the properties changes in the process of device fabrication. To this end, a homemade azimuth-dependent reflectance difference microscopy (ADRDM) method was applied for the optical anisotropy imaging of LSTD materials. Taking few-layered black phosphorus(BP) as an example, we observed apparent crystalline deformations in different zones of a BP crystal, revealing existing property modifications that cannot be detected by only morphology measurements of atomic force microscopy and optical microscopy. Besides, a large crystalline distortion of 20° was observed in a folding-existed BP flake induced by transferring process. These results establish the attention on the possible property modifications in the process of mechanical exfoliation and sample transferring and suggest ADRDM is an effective tool for online examination of property changes of LSTD materials in the process of device fabrications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barraza-Lopez S., Xia F., Zhu W., Wang H., J. Appl. Phys., 2020, 128(14), 140401

    Article  CAS  Google Scholar 

  2. Zhou Z., Cui Y., Tan P.-H., Liu X., Wei Z., J. Semicond., 2019, 40(6), 061001

    Article  CAS  Google Scholar 

  3. Li L., Han W., Pi L., Niu P., Han J., Wang C., Su B., Li H., Xiong J., Bando Y., Zhai T., InfoMat, 2019, 1(1), 54

    Article  CAS  Google Scholar 

  4. Li X., Liu H., Ke C., Tang W., Liu M., Huang F., Wu Y., Wu Z., Kang J., Laser Photonics Rev., 2021, 15(12), 2100322

    Article  Google Scholar 

  5. Ban Y., Jia J., Zhan Y., Liu Z., Li H., Liu K., Su Y., Lian M., Cao T., Adv. Photonics Res., 2022, 3(10), 2200137

    Article  CAS  Google Scholar 

  6. Li L., Yu Y., Ye G. J., Ge Q., Ou X., Wu H., Feng D., Chen X. H., Zhang Y., Nat. Nanotechnol., 2014, 9(5), 372

    Article  CAS  PubMed  Google Scholar 

  7. Liu H., Neal A. T., Zhu Z., Luo Z., Xu X., Tománek D., Ye P. D., ACS Nano, 2014, 8(4), 4033

    Article  CAS  PubMed  Google Scholar 

  8. Rodin A. S., Carvalho A., Castro Neto A. H., Phys. Rev. Lett., 2014, 112(17), 176801

    Article  CAS  PubMed  Google Scholar 

  9. Qiao J., Kong X., Hu Z.-X., Yang F., Ji W., Nat. Commun., 2014, 5(1), 4475

    Article  CAS  PubMed  Google Scholar 

  10. Low T., Rodin A. S., Carvalho A., Jiang Y., Wang H., Xia F., Castro Neto A. H., Phys. Rev. B, 2014, 90(7), 075434

    Article  CAS  Google Scholar 

  11. Gupta N., Kim H., Azar N. S., Uddin S. Z., Lien D.-H., Crozier K. B., Javey A., Nano Lett., 2022, 22(3), 1294

    Article  CAS  PubMed  Google Scholar 

  12. Kim H., Uddin S. Z., Lien D.-H., Yeh M., Azar N. S., Balendhran S., Kim T., Gupta N., Rho Y., Grigoropoulos C. P., Crozier K. B., Javey A., Nature, 2021, 596(7871), 232

    Article  CAS  PubMed  Google Scholar 

  13. Deng B., Frisenda R., Li C., Chen X., Castellanos-Gomez A., Xia F., Adv. Opt. Mater., 2018, 6(19), 1800365

    Article  Google Scholar 

  14. Huang S., Ling X., Small, 2017, 13(38), 1700823

    Article  Google Scholar 

  15. Liu F., Prog. Surf. Sci. 2021, 96(2), 100626

    Article  CAS  Google Scholar 

  16. Huang Y., Pan Y.-H., Yang R., Bao L.-H., Meng L., Luo H.-L., Cai Y.-Q., Liu G.-D., Zhao W.-J., Zhou Z., Wu L.-M., Zhu Z.-L., Huang M., Liu L.-W., Liu L., Cheng P., Wu K.-H., Tian S.-B., Gu C.-Z., Shi Y.-G., Guo Y.-F., Cheng Z. G., Hu J.-P., Zhao L., Yang G.-H., Sutter E., Sutter P., Wang Y.-L., Ji W., Zhou X.-J., Gao H.-J., Nat. Commun., 2020, 11(1), 2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee Y.-C., Chang S.-W., Chen S.-H., Chen S.-L., Chen H.-L., Adv. Sci., 2022, 9(1), 2102128

    Article  CAS  Google Scholar 

  18. Yuan L., Ge J., Peng X., Zhang Q., Wu Z., Jian Y., Xiong X., Yin H., Han J., AIP Adv., 2016, 6(12), 125201

    Article  Google Scholar 

  19. Mao N., Tang J., Xie L., Wu J., Han B., Lin J., Deng S., Ji W., Xu H., Liu K., Tong L., Zhang J., J. Am. Chem. Soc., 2016, 138(1), 300

    Article  CAS  PubMed  Google Scholar 

  20. Yuan H., Liu X., Afshinmanesh F., Li W., Xu G., Sun J., Lian B., Curto A. G., Ye G., Hikita Y., Shen Z., Zhang S.-C., Chen X., Brongersma M., Hwang H. Y., Cui Y., Nat. Nanotechnol., 2015, 10(8), 707

    Article  CAS  PubMed  Google Scholar 

  21. Zhang G., Chaves A., Huang S., Wang F., Xing Q., Low T., Yan H., Sci. Adv., 2018, 4(3), eaap9977

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang G., Huang S., Chaves A., Song C., Özçelik V. O., Low T., Yan H., Nat. Commun., 2017, 8(1), 14071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X., Jones A. M., Seyler K. L., Tran V., Jia Y., Zhao H., Wang H., Yang L., Xu X., Xia F., Nat. Nanotechnol., 2015, 10(6), 517

    Article  CAS  PubMed  Google Scholar 

  24. Yang J., Xu R., Pei J., Myint Y. W., Wang F., Wang Z., Zhang S., Yu Z., Lu Y., Light Sci. Appl., 2015, 4(7), e312

    Article  CAS  Google Scholar 

  25. Ribeiro H. B., Pimenta M. A., de Matos C. J. S., J. Raman Spectrosc., 2018, 49(1), 76

    Article  CAS  Google Scholar 

  26. Ribeiro H. B., Pimenta M. A., de Matos C. J. S., Moreira R. L., Rodin A. S., Zapata J. D., de Souza E. A. T., Castro Neto A. H., ACS Nano, 2015, 9(4), 4270

    Article  CAS  PubMed  Google Scholar 

  27. Mao N., Zhang S., Wu J., Zhang J., Tong L., Small Methods, 2018, 2(6), 1700409

    Article  Google Scholar 

  28. Faraone G., Balduzzi E., Martella C., Grazianetti C., Molle A., Bonera E., Nanotechnology, 2020, 31(41), 415703

    Article  CAS  PubMed  Google Scholar 

  29. Li X.-L., Han W.-P., Wu J.-B., Qiao X.-F., Zhang J., Tan P.-H., Adv. Funct. Mater., 2017, 27(19), 1604468

    Article  Google Scholar 

  30. Jiang H., Shi H., Sun X., Gao B., Appl. Phys. Lett., 2018, 113(21), 213105

    Article  Google Scholar 

  31. Shen W., Hu C., Tao J., Liu J., Fan S., Wei Y., An C., Chen J., Wu S., Li Y., Liu J., Zhang D., Sun L., Hu X., Nanoscale, 2018, 10(17), 8329

    Article  CAS  PubMed  Google Scholar 

  32. Shen W., Hu C., Li S., Hu X., Appl. Surf. Sci., 2017, 421, 535

    Article  CAS  Google Scholar 

  33. Shen W., Hu C., Huo S., Sun Z., Fan S., Liu J., Hu X., Opt. Lett., 2018, 43(6), 1255

    Article  CAS  PubMed  Google Scholar 

  34. Tao J., Shen W., Wu S., Liu L., Feng Z., Wang C., Hu C., Yao P., Zhang H., Pang W., Duan X., Liu J., Zhou C., Zhang D., ACS Nano, 2015, 9(11), 11362

    Article  CAS  PubMed  Google Scholar 

  35. Palik E. D., Handbook of Optical Constants of Solids, Volume 3, Academic Press, Orlando, FA, USA, 1998

    Google Scholar 

  36. Schuster R., Trinckauf J., Habenicht C., Knupfer M., Büchner B., Phys. Rev. Lett., 2015, 115(2), 026404

    Article  CAS  PubMed  Google Scholar 

  37. Huang K., Gao X., Hao B., Zhou X., Li Z., Su B., Li X., Chen G., Luo R., Liu Z., Tian J., J. Mater. Chem. C 2019, 7(20), 5945

    Article  CAS  Google Scholar 

  38. Islam A., Du W., Pashaei V., Jia H., Wang Z., Lee J., Ye G. J., Chen X. H., Feng P. X.-L., ACS Appl. Mater. Interfaces, 2018, 10(30), 25629

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.61927808, 52075383, 62205241), the National Key Research and Development Program of China(Nos.2022YFF0708300, 2020YFB1712700), the China Postdoctoral Science Foundation(No.2021M702450), and the Project of the State Key Laboratory of Precision Measuring Technology and Instruments, China(No.pilab2104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanfu Shen or Chunguang Hu.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic supplementary material

40242_2023_3095_MOESM1_ESM.pdf

Supporting Information: Direct observation of crystalline distortions in mechanically exfoliated low-symmetric 2D materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Shen, W., Wang, H. et al. Direct Observation of Crystalline Distortions in Mechanically Exfoliated Low-symmetric 2D Materials. Chem. Res. Chin. Univ. 39, 666–672 (2023). https://doi.org/10.1007/s40242-023-3095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3095-0

Keywords

Navigation